Improving the dry magnetic separation of BOF-slag by applying an innovative pre-treatment process

Iron recovery, Slow-Cooling, Crystallite Structure, Microwave-Treatment, Intergranular Cracks, Grinding

S. Wölfelschneider, R. Pietruck, D. Adolphy | BFI

- H. Schmid | voestalpine Stahl GmbH
- M. Häuselmann | K1-MET GmbH
- L. Gronen, A. Morillon | FEhS Institut für Baustoff-Forschung e.V.
- M. Omran | Oulun Yliopisto

Motivation and Process Concept

- > Motivation:
 - > 8 Mt of BOF-slag produced in EU in 2018*
 - Only 15.3% of BOF-slag recycled internally* →
 limitation due to P-content
 - > Fe-content ~ 20%
 - > Move towards a circular economy
 - → RFCS Project SLAGREUS
- > Process Concept:
 - Separation into Fe-rich/P-poor fraction and a Ca-/P-rich fraction
 - Fe-rich (Oxides, Ferrites) → fine ore substitute in sinter plant
 - Ca-/P-rich → external use as reactive cement additive, raw meal additive or fertilizer

*https://www.euroslag.com/products/statistics/statistics-2018/

Fluorescence: Fe Ka1

Ca Kα1

SLAGREUS Process Concept

SLAGREUS BOF-slag recycling process concept

1. Primary Liquid Treatment:

- 1. Segregation of Ca-/P-rich fraction in liquid state \rightarrow reduce need for secondary treatment
- Slow cooling of remaining Fe-rich fraction
 → large crystal grains facilitate secondary
 treatment
- 2. Secondary Solid Treatment of Fe-rich fraction
 - Microwave pre-treatment → intergranular cracks
 - 2. Grinding \rightarrow liberate mineral phases
 - Magnetic separation → obtain +Fe/-P fraction and +Ca/+P fraction

Primary Liquid Treatment

Slag Yard Compartment Test:

Slag Mixing

O₂-Injection + Slow Cooling

Slag Pot Test:

Slag Mixing

O₂-Injection

Slow Cooling

Self insulating properties for slow cooling

Enlarged crystal grain size

	Reference standard BOF slag	Overblown in converter + slow cooling	Liquid oxidation + slow cooling in slag yard	Liquid oxidation + slow cooling in slag pot
Q3(100µm) [wt.%]	100.0	17.5	53.8	57.1
Fe-content [wt.%]	24.4	40.5	23.8	20.1

Microwave Treatment – Setup

Alumina refractory block

Batch operation: Multimode 4 kW 2.45 GHz. Max. batch size: 1.2 kg

Time [min]

BF

Excellence in Applied Research **VDEh-Betriebsforschungsinstitut**

GmbH

Continuous operation: Resonance cavity max. 30 kW 915 MHz. Throughput: 5 - 10 kg/h*

*https://ceinnmat.com/

Microwave Treatment – Effect

Dry Magnetic Separation (Lab Scale)

Agglomeration \rightarrow Feed particle size range 56 µm to 100 µm

Increase in microwave irradiation duration/ intensity
 → Increase in magnetic yield of the dry magnetic separation (DMS)

Dry Magnetic Separation (Lab Scale)

Overall evaluation of separation \rightarrow Separation degree η adapted from Luyken and Bierbrauer

 η_i = Recovery of resource – Recovery of byproduct

Microwave irradiation \rightarrow overall positive effect on η

Effect of Solid-State Oxidation on DMS

Sample Preparation:

- 1. Grinding
- Separation of 56-100µm fraction
- Annealing for 1h at 900°C under ambient air

untreated MM Batch 7 min MM Batch 7 min + Solid State Ox. Res. Cav. Cont

→Magnetic separation with variable settings now possible → optimisation →Increase of η_{Fe} by factor 6 →Increase of η_{P205} from 2.1% to 11.1%

Dry Magnetic Separation (Pilot Scale)

Air Stream Matrix Separator*

Low Intensity Magnetic Drum Separator (LIMS)*

η _{Fe} [%]	Davis Tube	Air Stream Matrix Separator	LIMS
Liquid oxidation and slow cooled in slag yard Irradiated in Resonance Cavity	2.62	7.33	0.25
Slow cooling in slag pot Oxidated	37.34	11.72	12.60

*Montanuniversität Leoben Lehrstuhl für Aufbereitung und Veredelung

Improved Dry Magnetic Separation • Simon Wölfelschneider

Conclusion and Outlook

Outlook: Can solid state oxidation be done using waste heat?

Is it possible to tune high power microwave treatment to achieve homogenous thermal shock?

Can the produced slag fractions be utilised in the sinter plant (Fe-rich) and cement/fertilizer production (Ca-rich)?

Kontakt: M. Sc. Simon Wölfelschneider VDEh-Betriebsforschungsinstitut GmbH Sohnstraße 69 · 40237 Düsseldorf Telefon +49 211 98492-221 E-Mail simon.woelfelschneider@bfi.de · www.bfi.de

VDEh-Betriebsforschungsinstitut GmbH Sohnstraße 69 · 40237 Düsseldorf Telefon +49 211 98492-221 E-Mail simon.woelfelschneider@bfi.de · www.bfi.de

VDEh-Betriebsforschungsinstitut GmbH

ONE STEP AHEAD.

voestalpine

MET

Dry Magnetic Separation (Lab Scale)

Overall evaluation of separation \rightarrow Separation degree η adapted from Luyken and Bierbrauer

$$\eta_{i} = \frac{\left(w_{i,Magnetic} - w_{i,Feed}\right) \cdot \left(w_{i,Feed} - w_{i,NonMag}\right)}{w_{i,Feed} \cdot \left(1 - w_{i,Feed}\right) \cdot \left(w_{i,Magnetic} - w_{i,NonMag}\right)}$$

	CaO (%)	Fe (%)	P2O5 (%)	w [-]
Feed	38,39	24,92	1,01	
Conc.	37,45	26,09	0,98	0,28
Tailings	38,76	24,47	1,02	0,72

Reference \rightarrow untreated

Slag Pot \rightarrow untreated

	CaO (%)	Fe (%)	P2O5 (%)	w [-]
Feed	40,64	19,22	1,05	
Conc.	35,69	27,72	0,89	0,09
Tailings	41,14	18,36	1,07	0,91

Slag Pot \rightarrow MM

	CaO (%)	Fe (%)	P2O5 (%)	w [-]
Feed	41,65	20,00	1,10	
Conc.	36,914	26,514	0,944	0,15
Tailings	42,473	18,864	1,125	0,85

Slag Pot \rightarrow MM \rightarrow Ox

	CaO (%)	Fe (%)	P2O5 (%)	w [-]
Feed	40,37	22,58	1,04	
Conc.	31,39	34,45	0,83	0,55
Tailings	51,33	8,08	1,30	0,45