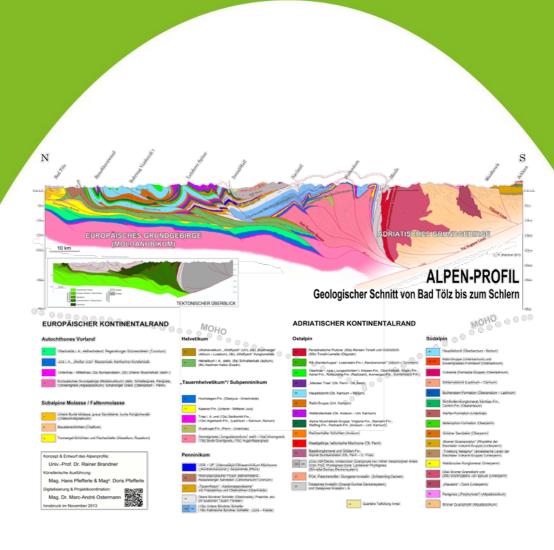


RecyDepoTech

09.11.-11.11.2022


GEOLOGEN/INGENIEURE GEOPHYSIKER/ UMWELTFACHLEUTE In-Situ Sanierung im Festgestein und alpin geprägtem Environment

Techniken und Möglichkeiten

Ing. Daniel Ruech, M. Sc. Erdwissenschaften d.ruech@sensatec.de
Niederlassungsleiter
Sensatec NL Ulm
Im Lehrer Feld 30
D-89075 Ulm

AGENDA

- Kurzabriss prägnanter Standorteigenschaften
- Detailerläuterung zu Geologie, Hydrogeologie und Hydrochemie sowie physikalischer Parameter
- Technische Herausforderungen und Lösungen
- Praxisbeispiel Schweiz
- Praxisbeispiel Süddeutschland
- Conclusio

Kurzabriss prägnanter Standorteigenschaften

Alpine und voralpine Environments zeigen große Unterschiede im Vergleich zu den "Tiefebenen" Europas

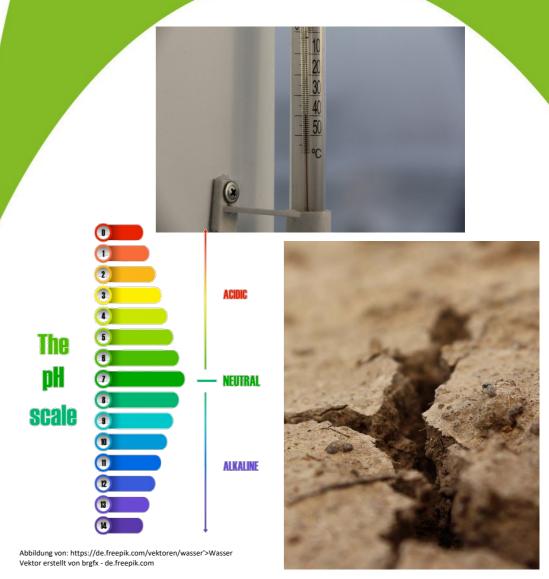
Wesentliche Merkmale sind:

- die "junge" Entstehungsgeschichte
- die "diverse" Zusammensetzung des Untergrundes
- die logistische Herausforderung & unterschiedliche länderspezifische Herangehensweise an die Altlastenthematik
- die Kleinteiligkeit des Environments in jeglicher Hinsicht

Detailerläuterung zu Geologie, Hydrogeologie und Hydrochemie sowie physikalischer Parameter

Geologie

- Divers gestaltete Liefergebiete mit unterschiedlichsten Gesteinen und Sedimenten (Karbonate, Kristallin, unterschiedliche metamorphe Fazies, diverse mineralogische und damit geochemische Signaturen, etc.)
- Unterschiedliche "Bearbeitungsgrade" und Ablagerungsstrukturen (tlw. tonige Beckensedimente, glaziale Überprägung, fluviatile Sedimente)
- gering bis gar nicht mit Lockergestein überdeckte Festgesteinskörper


Hydrogeologie und -chemie

- Komplexe hydrogeologische Bedingungen, mit engem Wechsel an z.B. k_f-Werten, schichtgebundene Vorzugsrichtungen, große Kluftgrundwasserkörper mit tektonischer Überprägung
- Unterschiedliche Untergründe führen zu diversen hydrochemischen Signaturen (Karbonatgehalte, Mineralwässer an Störungszonen, Solen, etc.)

Detailerläuterung zu Geologie, Hydrogeologie und Hydrochemie sowie physikalischer Parameter

Physikalische Parameter

- Unterschiedliche Bodeneigenschaften (pH Wert, Leitfähigkeit) aber vor allem Temperatur von Boden und Grundwasser entscheidend zumindest für biologische in-Situ Sanierungstechniken
- Präferenzielle Fließwege durch tektonische Beanspruchung
- Geotechnische Eigenschaften oftmals limitierend für Einsatz verschiedener Sanierungstechnologien
 - → Anpassung

Detailerläuterung zu Geologie, Hydrogeologie und Hydrochemie sowie physikalischer Parameter

Physikalische Parameter

- Temperaturbedingter biologischer Abbau auch Gegenstand von Forschungsvorhaben
 → Mair, J., et al., A feasibility study on the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site, Cold Regions Science and Technology (2013)
- Deutliche Reduzierung des biologischen Abbaus bei Temperaturdelta von lediglich 10°C im Hinblick auf Feststoffgehalte (analoge Effekte im Grundwasser vorhanden)

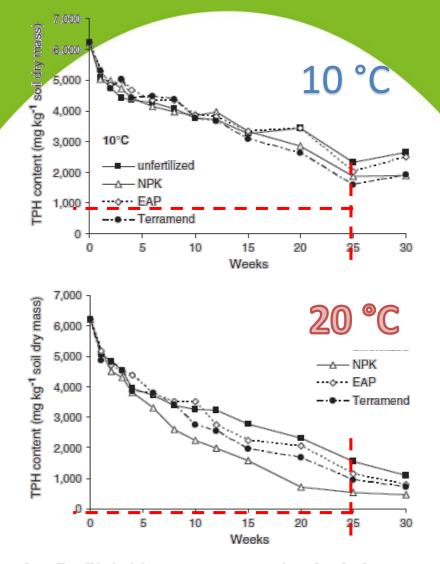


Fig. 1. Effect of biostimulation treatments on TPH removal at 10 °C and 20 °C. Data are mean values of three replicates; standard deviations were ≤10%.

Abbildung aus: Mair, J., et al., A feasibility study on the bioremediation of hydrocarbon-contaminated soil froman Alpine former military site: Effects of tempera..., Cold Regions Science and Technology (2013), http://dx.doi.org/10.1016/j.coldregions.2013.07.006

Technische Herausforderungen und Lösungen

Wesentliche Komponente bei der Planung ist Sanierungsinfrastruktur:

- → Eingabemöglichkeiten für eine in-Situ Behandlung
- Welcher Untergrund steht an?
- Welche geologischen Aspekte sind zu berücksichtigen (geotechnische, tektonische)?
- Welches Bohrverfahren (im Regelfall) kann zur Eingabe angewendet werden?

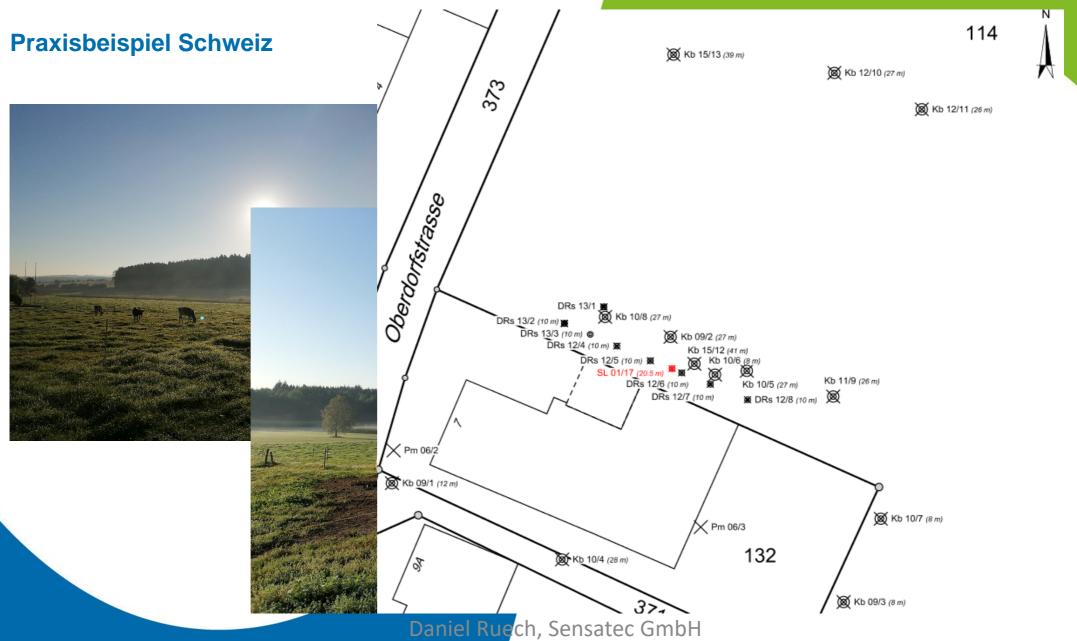
Umfassende Infrastruktur oft aufwendig und kostenintensiv (insbesondere bei Kluftgrundwasserleitern)! Daher:

- Einmallösungen vorteilhaft, spezielle Ausbauten
- Lokale Partner einbinden, insbesondere im Bereich Bohrtechnik
- Umfangreiche geologische Hintergrundrecherche (Gutachter, Geologische Dienste, Literatur)
- Oft Bohrverfahren einzusetzen, die mit Meisel oder Kernbohrkronen arbeiten
- DirectPush oft limitiert, wobei Tiefen > 20 m in AT umgesetzt im dynamischen Verfahren

Technische Herausforderungen und Lösungen

- Abteufen von Kernbohrungen zur Schichtaufnahme und Festlegung von Ausbauten
- Eingabe Wirkstoffe über Hochdrucksysteme
- Erstellung von fest verbauten Injektionspegeln mit Manschettenrohren
- Nutzung Doppelpacker Systeme
- Geophysikalische Untersuchung des Standortes zu Kluftgefüge aber auch Wasserandrangsmessungen
- Ausarbeitung von Standortmodellen

	Art der Einbringung der Abbausubstrate in Unterböden und Festgesteinen (hinsichtlich auf Kf Werte)									
Herkömmlich eingebrachte Abbau- substrate	<10 ⁻² m/s	10-3	bis	10-5	<10-5	<10-6	<10-7	<10-8	<10-8	<10 ⁻⁶ m/s
	Kies	Sand	Sand	Sand	Schluffiger	Schluff	Schluffiger Ton	Ton	Festgestein	Geklüftetes Festgestein
		grob	mittel	fein	Sand					
Stützmittel (Sand)	INF	TSE	TSE	TSE	TSE	TSE	TSE	TSE	TSE	TSE
Grobe Fe ⁰ -Fasern	INF	TSE	TSE	TSE	TSE	TSE	TSE	TSE	TSE	TSE
Mikroeisen	INF	INF	INF/ TSE	INF/ TSE	TSE	TSE	TSE	TSE	TSE	INF/ TSE
Feststoff Oxidationsmittel	INF	INF	INF	INF/ TSE	TSE	TSE	TSE	TSE	TSE	INF/ TSE
Lösliches Oxidationsmittel	INF	INF	INF	INF	INF	INF/ TSE	TSE	TSE	TSE	INF
Lösliche Biosubstrate	INF	INF	INF	INF	INF	INF/ TSE	TSE	TSE	TSE	INF
Viskose Biosubstrate Lactat, Melasse, Pflanzenöl Emulsionen	INF	INF	INF	INF	INF/ TSE	TSE	TSE	TSE	TSE	INF
Biofeststoffe (Zellulose, Chitin)	INF	INF/ TSE	TSE	TSE	TSE	TSE	TSE	TSE	TSE	INF/ TSE



- Standort im ländlichen Raum nahe Bern
- LCKW Verunreinigung im Bereich ehemaliger Galvanik
- Grundmoränenablagerung über Vorschüttschotter
- Mehrere 10er m Mächtigkeit
- Vorschüttschotter wasserwirtschaftlich bedeutender GW Körper in der Region

- Hochkonsolidierte Grundmoräne mit Schichtwasserführung
- "Schwamm" für Schadstoffe
- Feinkörniges Sediment durchsetzt mit teils Autogroßen Geschieben
- Vorlaufende Laborversuche und mehrerer Pilotversuche zur Festlegung einer Sanierung
- Aktuell biologisch-chemische Abreinigung
- Feldpilotversuch insbesondere zur Frage der Einbringbarkeit von Wirkstoffen in Grundmoräne

Verfahrensidee zur Umsetzung:

- Biologischen Abbau im Feld pr

 erfolgt und erfolgreich allerdings mit

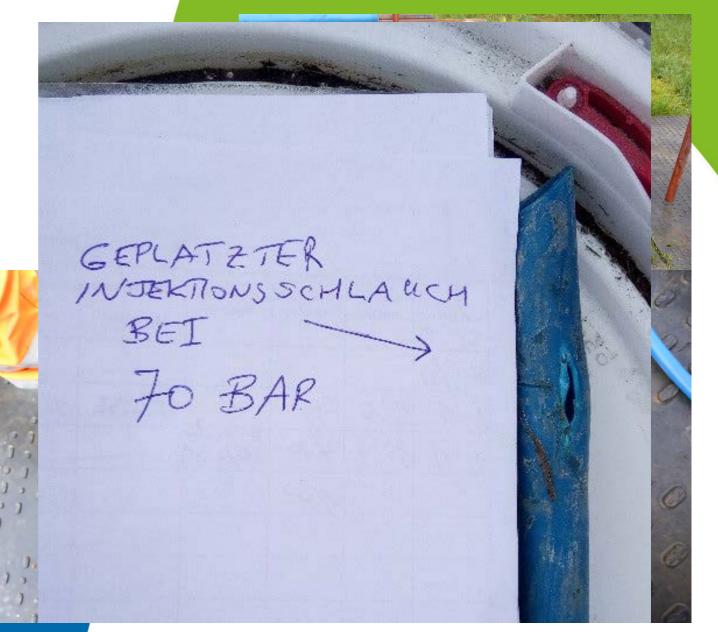
 kleinsten zu erreichenden ROI (Radius of
 Influence) um Eingabemessstellen in

 Grundmoräne
- Alternativkonzept des chemisch biologischen Sanierungsvorhabens (ISCO mit anschließender Biologie im gut durchlässigen Bereich der Vorschüttschotter)
- Prüfung der Reichweitenmaximierung gefragt
 - → Vorschlag TSE

Ausführung mittels Targeted Solids Emplacement (TSE)

- Direktinjektion mittels DP vorab ausgeschlossen (Geologie)
- Erstumsetzung mittels Sonic Drilling
- Zweitumsetzung mittels
 Manschettenrohr

Die Versuche zur Reichweitenmaximierung starten....


Eingabe Oxidationsmittelsuspension mittels Sonic drilling mit zwei unterschiedlichen Injektionslanzen der Fa. Eijkelkamp

→ Kein ausreichender Reibungswiderstand am Gebirge

Eingabe Oxidationsmittelsuspension in im Nachgang an Sonic Drilling eingebautes 10er Schlauchbündel

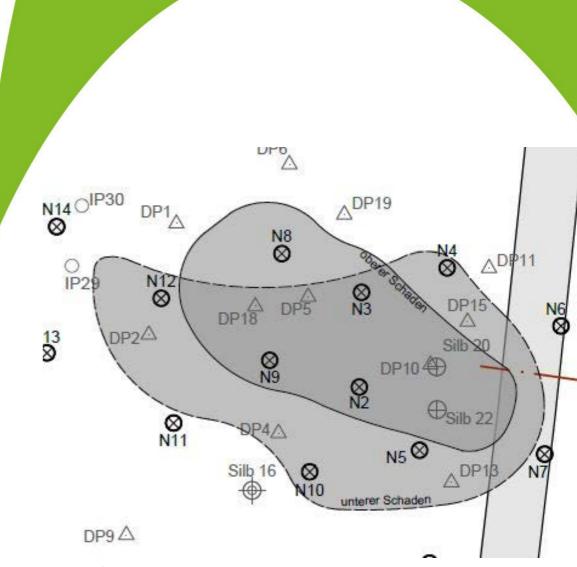
- → Über GOK zu hoher Druckaufbau, Injektionsschlauch platzt bei etwa 70 bar Injektionsdruck
- → Schwachstelle zwischen
 Hockdruckanschluss (Kupplung) und
 OK des einbetonierten Bündels

Lösung: Eingabe Oxidationsmittelsuspension über Manschettenrohr inkl. Nutzung Doppelpackersystem (100 bar)

- → Eingabe in 50 cm Abständen
- → Druckaufbau bis 80 bar
- → Erfolgreiches Fracken der Grundmoräne
- → Eingabe von 14,5 t Suspension bzw. 1,7
 Tonnen Reinstoff
- → Reichweiten von ROI > 3,0 m im Einzelfall > 6,0 m

Prinzipielle Anwendbarkeit gegeben, Abbau von Schadstoffen erkennbar

	Drs 12/5	, i		Drs 12/6
Sept	Okt	Nov	Sept	Okt
724	4060	1516	764	1249
7,21	11,52	8,77	7,15	10,15
5,1	718	158	7,8	106
58,2	1420	743	69,7	526
<0,5	<0,5	<0,5	<0,5	<0,5
<0,5	<0,5	<0,5	<0,5	<0,5
<0,5	<0,5	<0,5	<0,5	<0,5
<0,5	<0,5	<0,5	<0,5	<0,5
12,4	6	0,9	563	199
<0,5	<0,5	<0,5	<0,5	<0,5
11,3	6	1,2	106	96,5
3,9	1	<0,5	5,9	10,3
27,6	13	2,1	674,9	305,8



- Sanierung eines LCKW Schadens mit Schaffung eines reduktiven Milieus (im Folgenden LCKW Dechlorierung)
- Einbringung einer langeverfügbaren "Reduktionsquelle" (0-wertiges Eisen)
- Sanierung in 2 unterschiedlichen Grundwasserleitern wobei der obere gut, der untere schlechter wasserführend ist
- Sanierung bis in Tiefen von rund 20 m u. GOK angestrebt

"Oberer" Schadensbereich (Neuenburg-Formation)					
Schadstoffinventar					
Art:	LCKW, i.W. Tetrachlorethen				
Schadstoffverteilung:	Tiefenlage: ab ca. 6 - 9 m u. GOK Ausdehnun ca. 160 m ²				
Schadstoffmenge im Untergrund:	ca. 0,8 t LCKW				
LCKW-Fracht:	ca.108 g/d				
Konzentrationen im Boden					
Tiefe 6 - 7 m u. GOK:	max. 6.700 mg/kg				
Konzentrationen im Grundwasser					
Tiefe 4 - 5 m u. GOK:	3.607 µg/I (DP10-Grundwassersondierung)				
	10.000 μg/l (Klarpumpen)				
GWM Silb 20 Filter 3 - 13 m u. GOK:	1.975 μg/l (repräsentative Pumpprobe)				
GWW SID 20 FILE 3 - 13 III d. GOK.	3.607 μg/l (IPV nach 1 h)				
	3.800 μg/I (max. berechnet nach IPV)				
Untergrundverhältnisse					
Geologie:	Quartär, Neuenburg-Formation (Basis: Übergangsbereich)				
Bodenart Auffüllung:	ca. 0 - 3 m u. GOK: Schluff, Kies, sandig, steinig				
Bodenart anstehend :	ab ca. 3 - 12 m u. GOK: Kies, sandig, steinig ab ca. 12 - 16 m u. GOK: Kies, sandig, schluffig, z.T zersetzte Gerölle (Übergangsbereich)				
Grundwasserflurabstand:	ca. 4 - 7 m u. GOK				
kf-Wert:	2,37E-04 bis 2,58E-03 m/s (oberhalb Übergangsbereich)				
hydraulischer Gradient:	ca. 0,8 %				
Abstandsgeschwindigkeit:	ca. 1,4 - 15 m/d (bei nutzbarer Porosität von 12%)				

Quelle: Ausschreibungsunterlagen, erstellt durch HPC AG

"Tiefer" Schadensbereich (Breisgau-Formation)						
Schadstoffinventar						
Art:	LCKW, i.W. Tetrachlorethen					
Schadstoffverteilung:	Tiefenlage: ab ca. 17 - 20 (22) m u. GOK Ausdehnung: ca. 260 m ²					
Schadstoffmenge im Untergrund:	ca. 1,5 t LCKW					
LCKW-Fracht:	ca. 42 g/d (berechnet IPV)					
Konzentrationen im Boden						
Tiefe ca. 18 m u. GOK:	max. 12.000 mg/kg					
Konzentrationen im Grundwasser						
Tiefe 19,5 m u. GOK:	97.049 μg/l (tiefenzoniert aus Bohrung Silb21)					
Tiefe 19 - 20 m u. GOK:	2.102 μg/l (DP15-Grundwassersondierung)					
Tiefe 20 m u. GOK:	200.000 μg/l (tiefenzoniert aus Bohrung N2)					
Tiefe 24 - 25 m u. GOK:	8.300 μg/l (tiefenzoniert aus Bohrung N9)					
Tiefe 25 m u. GOK:	2.804 μg/l (tiefenzoniert aus Bohrung Silb21)					
Tiefe 30 m u. GOK:	93 μg/l (tiefenzoniert aus Bohrung Silb21)					
	9.817 μg/l (Klarpumpen)					
GWM Silb 21 Filter 15 - 23 m u. GOK:	941 μg/l (IPV nach 1,5 h)					
	12.000 μg/l (max. berechnet nach IPV)					
Untergrundverhältnisse	Untergrundverhältnisse					
Geologie:	Quartär, Breisgau-Formation					
Bodenart anstehend :	ab ca. 12 (16)m - 38 m u. GOK: "Faule Gerölle", Schluff-/Toneinschaltungen					
kf-Wert:	6,8E-05 m/s					
hydraulischer Gradient:	ang. ca. 0,8 %					
Abstandsgeschwindigkeit	ca. 0,4 m/d (bei nutzbarer Porosität von 12%)					

"Die Neuenburg-Formation besteht aus überwiegend unverwitterten ("frischen"), grauen bis rötlichgrauen, groben, sehr locker bis locker gelagerten Schottern mit wechselnden Sand- und geringen Schluffanteilen. Stellenweise sind in die Kiese Steine und Blöcke bzw. Rollkieslagen eingeschaltet. Innerhalb der Kiesabfolge sind linsenartig sandige Bereiche ausgebildet, die lateral nur über kurze Entfernungen korrelierbar sind. Im Süden des Markgräfler Landes treten im basalen Abschnitt der Neuenburg-Formation nagelfluhartig verkittete Schotter auf. In Rheinnähe dominieren Gerölle **alp<u>inen</u>** Ursprungs. Mit zunehmender Entfernung vom Rhein nimmt der Anteil an Schwarzwaldkomponenten östlichen zu. Grabenrand besteht die Neuenburg-Formation meist ausschließlich aus Schwarzwaldkomponenten." (Quelle https://lgrbwissen.lgrb-bw.de/)

12 m u. GOK

16 m u. GOK

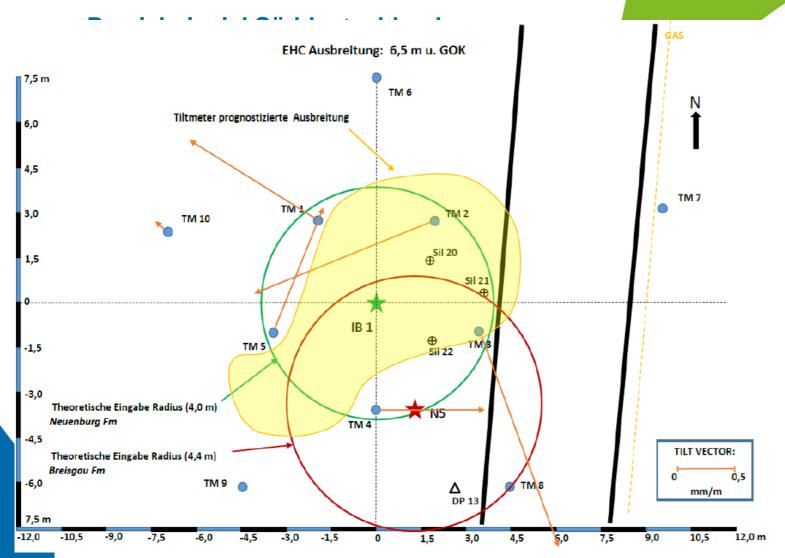
Neuenburg-Formation in der Bohrung Hartheim B1 (LGRB-Archiv-Nr. Bo 8011/492), Quelle: https://lgrbwissen.lgrb-bw.de/hydrogeologie/pliozaene-quartaere-kiese-sande-oberrheingraben/hydrogeologischer-ueberblick/neuenburg-formation

"Die Breisgau-<u>Formation</u> besteht aus unterschiedlich dicht gelagerten, sandig-<u>schluffigen</u> Kiesen, die stellenweise geringmächtige Schlufflinsen enthalten. Die Gerölle stammen in Rheinnähe hauptsächlich aus den Alpen (Rheineinzugsgebiet). In Annäherung an den Grabenrand nimmt der Anteil der Gerölle aus dem Schwarzwald stetig zu (lokale Komponenten). Die <u>alpinen</u> Gerölle nehmen zudem generell von unten nach oben zu.

Die **Kristallingerölle** können z. T. unverwittert, z. T. mäßig bis stark <u>verwittert</u> sein. Sie zerfallen dann zu Mittel- bis Grobsand. An manchen Geröllen treten Verwitterungsrinden (Halos) auf. Der Zersetzungsgrad und die <u>Lagerungsdichte</u> der Breisgau-Formation nehmen generell mit der Tiefe zu. Der Anteil an <u>zersetzten</u> **Kristallingeröllen** nimmt nach Norden ab." (Quelle https://lgrbwissen.lgrb-bw.de/)

92 m u. GOK

96 m u. GOK


Breisgau-Formation in der Bohrung Hartheim B 1 (LGRB-Archiv-Nr. BO 8011/492), Quelle: https://lgrbwissen.lgrb-bw.de/hydrogeologie/pliozaene-quartaere-kiese-sande-oberrheingraben/hydrogeologischer-ueberblick/breisgau-formation

- Eingabe in die Formationen mittels DP geplant, inkl. Vorbohren im Bereich der Übergangszone Neuenburg zu Breisgau Fm.
- Eingabe von rund 1,8 t Wirkstoff (oben EHC, unten Geoform ER) in > 13 t Suspension
- Pilotversuch mit insgesamt 2
 Injektionsbohrungen
- Prüfung der Reichweite mittels
 Neigungsmessern und drei
 Verifikationsbohrungen im Anschluss an Injektion

- Eingabe in Neuenburg Fm, mittels DP problemlos möglich, jedoch teils Austritt an Oberfläche
- Eingabe in Breisgau Fm nicht durch direktes Bohrverfahren umzusetzen
- Hier wurde alternativ auf vorausschauend angelegte Bohrungen zurück gegriffen in Abstimmung mit Gutachter
- Eingabe in mit Ton verfüllte "Todstrecke" der vorhandenen Messstelle N5

Bezeichnung Bohrung: V2

Datum: 03.-04.05.2021

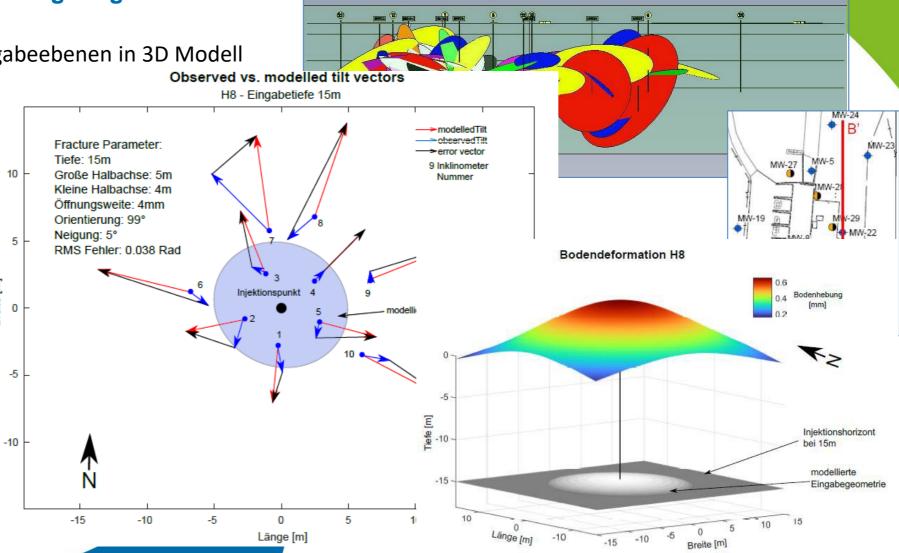
Datum:			0304.05.2021	
Tiefe	Nach- weis	SM 30 Messwert [SI]	PID Messwert [ppm]	Bemerkungen / magnetische Anteile? / Lösemittel?
				opt. unauffällig
6,0-6,2	+?	1,07	-	fauliger Geruch (Melasse)
		4.7		opt. unauffällig,
6,2-6,4	+	1,7	-	fauliger Geruch (Melasse)
		1,86	5	einige weißlbeige Anteile (Guar?)
6,4-6,6	+			fauliger Geruch (Melasse)
		0,14	4	opt. unauffällig,
6,6-6,8		0,14	4	fauliger Geruch (Melasse)
		0,14	5	opt. unauffällig,
6,8-7,0		0,14	,	fauliger Geruch (Melasse)
	+	0,58	200	opt. unauffällig, magn. Fe-Anteile!
7,0-7,2		0,58		fauliger Geruch (Melasse)
		0,2		opt. unauffällig,
7,2-7,4		0,2	50	fauliger Geruch (Melasse)
		0,3		opt. unauffällig,
7,4-7,6		0,3	300	fauliger Geruch (Melasse)
	++	6		grau-schwarze Bänder,
7,6-7,8	- ''	0	280	deutlich magnetische Anteile (Fe)
	++	3,55		grau-schwarze Bänder,
7,8-8,0	***	3,33	50	deutlich magnetische Anteile (Fe)
	+	1,38	80	opt. unauffällig,
8,0-8,2		1,36	80	kleine magn. Partikel
	+	1,46	60	optisch unauffällig,
8,2-8,4				einzelne Fe-Partikel bis 0,5 mm
		0,14	_	
8,4-8,6		0,14		optisch unauffällig
		0,08	_	
8,6-8,8		0,00	_	optisch unauffällig
		0,12	_	
8,8-9,0		0,12		optisch unauffällig
		0,19	_	
9,0-9,5		5,13		optisch unauffällig

Quelle: Auswertung HPC AG zum Nachweis des Fe Gehaltes in den Verifikationsbohrungen

Praxisbeispiel Kartierung Eingaben

Darstellung der Eingabeebenen in 3D Modell

möglich (SENSATR


Basierend auf Tiltr

Hebungsgrößen al

Einflussradien und

Nachweisführung eingepressten Mat

Planungs- und Kor **E** Errichtung von rea 🖁 🔍 durch lineare Eing

Conclusio & leassons learned

In-Situ Sanierungen im alpin geprägten Umfeld sind machbar! Aber:

- Entsprechende Planungsleistungen und Anpassung von Techniken sind notwendig
- Möglichst genaue Kenntnis des Standortes (noch wichtiger als ohnehin in der in-Situ Sanierung) aufgrund lokal sehr differenzierter Standorte in Geologie, Hydrogeologie, Hydrochemie und sonstiger Parameter
- Eingabetechnik sollte gewisse "Schlagkraft" besitzen
- Abiotische Prozesse ohne große
 Unterschiede zum sonstigen Einsatz

- Biologische Prozesse können mehr Zeit benötigen bzw., auch zusätzlichen Aufwand erfordern (insbesondere T)
- Lokale Anforderungen (legislativ) berücksichtigen
- Lokale Standortbedingungen pr
 üfen (Erkundung, Labor) vorgeschaltet der Sanierung
- Identifikation von Potential
- Schrittweises Herantasten
- Plan B (siehe Beispiel Süddeutschland) sinnvoll
- Enge Abstimmung und Planung aller Akteure wichtig

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

FRAGEN?

MEHR INFORMATIONEN?

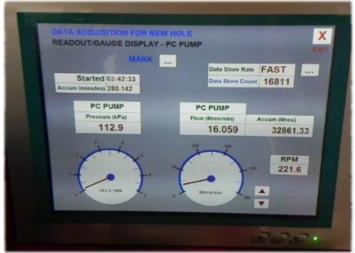
Sensatec GmbH

Sanierungs- und Sensoriktechnologien Niederlassung Ulm

Im Lehrer Feld 30

89081 Ulm

d.ruech@sensatec.de


info@sensatec.de

www.sensatec.de

TECHNISCHE INJEKTIONSLÖSUNGEN: TSE

TSE in der Praxis:

- Misch- und Pump-Anlage
 - Edelstahl Mischtanks (1,200 L) und Rührwerke
 - Hochdruck Pumpen (bis 100 bar)
 - Echtzeitausgabe Injektionsdruck und Fließrate
- Kartierung von Wirkstoffverbreitung im Untergrund über Bodenneigungsmeter
- Geoprobe Bohranlage oder vorheriger
 Ausbau von Manschettenrohren

TECHNISCHE INJEKTIONSLÖSUNGEN: TSE

Überwachung: TSE beweist Substratverteilung im Schadensbereich

Kartierung mit Bodenneigungsmetern "Tiltmeter Geophysics"

- Messung der Bodenneigung (Winkel und Richtung) während des Injizierens und Bildung eines Netzwerkes von eingegebenen Substraten
- Auswertung als 3D-Modell
- Nachweis von Wirkstoffverteilung und vernetzten Wegsamkeiten

TECHNISCHE INJEKTIONSLÖSUNGEN: TSE

Vorteile des TSE®-Verfahrens:

- Gleichmäßige Verteilung von Wirkstoffen im Grundwasserleiter
- Erhöhung der Permeabilität in gering durchlässigen Böden und Fels
- Gleichzeitiges Einbringen von großen Mengen Wirkstoffe
- Vergrößerung der Kontaktflächen mit den Schadstoffen
- Vergrößerung des Wirkungsradius
- Weniger Bohrungen und Injektionen / Förderbrunnen

- In-Situ Konstruktion von PRBs durch Bohrungen
- Kleinflächig geeignet für enge Betriebsgelände und in Gebäuden
- Kein Aushub erforderlich ...und...
- Somit deutliche Kosteneinsparung!