

AMTLICHE MATERIALPRÜFUNGSANSTALT DER FREIEN HANSESTADT BRENEN

Spray-Slag: Processing of liquid blast furnace slag

2022 Recy & DepoTech, Nov. 9th-11th

Maike Peters Aline Weicht peters@mpa-bremen.de a.weicht@iwt.uni-bremen.de

L. Achelis, F. Hlawatsch, S. Evers, V. Uhlenwinkel, D. Ufermann-Wallmeier, U. Fritsching

Leibniz Institute for Materials Engineering - IWT, Bremen, Germany Particles and Process Engineering, University of Bremen, Germany Department of Civil and Environmental Engineering, City University of Applied Sciences, Bremen, Germany

How is slag processed and used in building materials?

Content

Atomization of slag

- Development of the atomizer
- Analysis of the process and the powder
- Stability of the process
- Powder size fractions
- Flowability of the powder

Application of atomized slag

Investigation on building material properties

- Workability of binder pastes
- Reactivity of particles
- Strength properties

Difficulties in the atomization of slag

Challenges

High viscosity

- Solidification of the melt \rightarrow abortion of the process
- Incomplete formation of particles \rightarrow fibers

Low density

• Less liquid inertia \rightarrow lower stability of the process

Challenges

- Reduction of fibers & smaller particle size (< 200 µm)
 → Preheated atomization gas
- Stable atomization process (no recirculation of melt)
 → Optimized atomizer

Mills, K. C., Su, Y., Li, Z., & Brooks, R. F. (2004). Equations for the calculation of the thermo-physical properties of stainless steel. ISIJ international, 44(10), 1661-1668.

Atomizaton of slag: free-fall atomizer

Leibniz-Institut für Werkstofforientierte Technologien

Experimental setup, $T_L = 1700^{\circ}C$

Atomizaton of slag: free-fall atomizer

Leibniz-Institut für Werkstofforientierte Technologien

Experimental setup, $T_L = 1700^{\circ}C$

Influence of the atomization gas temperature

Control parameters: primary gas pressure $[p_{PG}]$, secondary gas pressure $[p_{SG}]$, secondary gas temperature $[T_{SG}]$

Unstable atomization & upward transportation of melt

- \rightarrow Gas recirculation
- \rightarrow Increases with higher gas pressures

Adhesion of recirculating melt at the gas nozzle \rightarrow Could lead to an abortion of the process

Atomizaton of slag: free-fall atomizer

Experimental setup, $T_L = 1700^{\circ}C$

Influence of the primary gas

Control parameters: primary gas pressure [p_{PG}], secondary gas pressure [p_{SG}], secondary gas temperature [T_{SG}]

- Primary gas reduces the recirculation of the melt and the atomization gas
- → Stable process without melt adhesions at the gas nozzle

Particle shape

Flowability

Dynamic angle of repose

Influence on the workability of binder paste

Binder paste flowability

Influence on the workability of binder paste

Binder paste flowability

100 wt% CEM I, w/b=0.5 conventional 10 wt% granulated blast furnace slag, w/b=0.5 additives 10 wt% coal-fly ash, w/b=0.5 **I** - 8 % water 10 wt% "Spray-Slag", w/b=0.46 atomized slag 10 wt% "Spray-Slag", w/b=0.5 50 100 150 200 0 Binder paste flowability [mm]

- "ball bearing effect"
- less wetted surface area

Influence on the workability of binder paste

Leibniz-Institut für Werkstofforientierte Technologien

Rheology of binder paste

Investigations on the reactivity of the particles

Scanning electron microscopy on the thin sections

Treatment: **Mortar**, 50 wt% GGBS resp. atomized slag 50 wt% cement water/binder-ratio = 0.5 28 days hydration at 20°C, under water Treatment: **Alkaline solution** NaOH + KOH pH ~ 14

7 days hydration at 40°C corresponds nearly 28 days at 20°C

Granulated blast furnace slag

Atomized slag

Hydration of atomized blast furnace slag

Compression strength of mortar

Mortar prisms

- binder content according to water/binder-ratio
- 28 days hydration

Comparison

		Atomization		
Process steps	3 (wet granulation, drying & grinding)		1 (atomization)	
Resources	High consumption on energy and water, high CO_2 emissionUtilization of the heat energy and liquid s of the blast furnace slag			
Particle shape	Angular	Spherical	Spherical	
Flowability	Poor	Improved	Improved	
Reaction potential	Given	Given		
granulated slag particles				

Thank you for your attention!

"Spray-Slag" Processing of liquid blast furnace slag

Maike Peters Aline Weicht

peters@mpa-bremen.de a.weicht@iwt.uni-bremen.de

L. Achelis, F. Hlawatsch, S. Evers, V. Uhlenwinkel, D. Ufermann-Wallmeier, U. Fritsching

Leibniz Institute for Materials Engineering - IWT, Bremen, Germany Particles and Process Engineering, University of Bremen, Germany Department of Civil and Environmental Engineering, City University of Applied Sciences, Bremen, Germany

The financial support of the "Spray-Slag" project AUF0014 by the BAB Bremer Aufbau-Bank GmbH through the EFRE-Program (European Regional Development Fund) is gratefully acknowledged.

European Union Investing in Bremen's Future European Regional Development Fund Die Senatorin für Klimaschutz, Umwelt, Mobilität, Stadtentwicklung und Wohnungsbau

Influence of the primary gas

Melt flow behaviour

Shorter distance between gas nozzle & atomization area

→ Higher impact between gas & melt → More powder < 90 μ m

