

Spray-Slag: Processing of liquid blast furnace slag

2022 Recy & DepoTech, Nov. 9th-11th

Maike Peters peters@mpa-bremen.de
Aline Weicht a.weicht@iwt.uni-bremen.de

L. Achelis, F. Hlawatsch, S. Evers, V. Uhlenwinkel, D. Ufermann-Wallmeier, U. Fritsching

Leibniz Institute for Materials Engineering - IWT, Bremen, Germany Particles and Process Engineering, University of Bremen, Germany Department of Civil and Environmental Engineering, City University of Applied Sciences, Bremen, Germany

How is slag processed and used in building materials?

Atomization of slag

Development of the atomizer

Analysis of the process and the powder

- Stability of the process
- Powder size fractions
- Flowability of the powder

Application of atomized slag

Investigation on building material properties

- Workability of binder pastes
- Reactivity of particles
- Strength properties

Difficulties in the atomization of slag

Challenges

High viscosity

- Solidification of the melt → abortion of the process
- Incomplete formation of particles → fibers

Low density

Less liquid inertia → lower stability of the process

Challenges

- Reduction of fibers & smaller particle size (< 200 μm)
 Preheated atomization gas
- Stable atomization process (no recirculation of melt)
 → Optimized atomizer

Atomizaton of slag: free-fall atomizer

Experimental setup, $T_L = 1700^{\circ}C$

Atomizaton of slag: free-fall atomizer

Leibniz-Institut für

Experimental setup, $T_L = 1700$ °C

Influence of the atomization gas temperature

Control parameters: primary gas pressure $[p_{PG}]$, secondary gas pressure $[p_{SG}]$, secondary gas temperature $[T_{SG}]$

	snapshots of the atomizations		
	initial	middle	end
$T_{SG} = 300$ °C $p_{SG} = 1.55$ MPa $p_{PG} = 0$	1 cm		
$T_{SG} = 750$ °C $p_{SG} = 1.55$ MPa $p_{PG} = 0$	1 cm		

Atomizaton of slag: free-fall atomizer

Influence of the primary gas

Control parameters: primary gas pressure [p_{PG}], secondary gas pressure [p_{SG}], secondary gas temperature [T_{SG}]

	snapshots of the atomizations			
	initial	middle	end	
$T_{SG} = 750$ °C $p_{SG} = 1.55$ MPa $p_{PG} = 0$	1 cm			
$T_{SG} = 750$ °C $p_{SG} = 1.55$ MPa $p_{PG} = 0.1$ MPa				

- Primary gas reduces the recirculation of the melt and the atomization gas
 - → Stable process without melt adhesions at the gas nozzle

Particle shape

Granulated slag

2 cm

Atomized slag

Flowability

Dynamic angle of repose

Steepest angle of the surface of the stacked material with respect to the horizontal plane

Granulated slag $\alpha = 49^{\circ}$

2 cm

Rotating cylinder

 $\alpha = 32^{\circ}$

Influence on the workability of binder paste

Binder paste flowability

Influence on the workability of binder paste

Binder paste flowability

- "ball bearing effect"
- less wetted surface area

Influence on the workability of binder paste

Leibniz-Institut für

Rheology of binder paste

Investigations on the reactivity of the particles

Scanning electron microscopy on the thin sections

Treatment:

Mortar, 50 wt% GGBS resp. atomized slag

50 wt% cement

water/binder-ratio = 0.5

28 days hydration at 20°C, under water

Treatment:

Alkaline solution

NaOH + KOH pH ~ 14

7 days hydration at 40°C corresponds nearly 28 days at 20°C

Granulated blast furnace slag

Atomized slag

Atomized slag

Hydration of atomized blast furnace slag

Mortar prisms

- binder content according to water/binder-ratio
- 28 days hydration

Advantages of atomization in slag processing

	Conventional process	Atomization	
Process steps	3 (wet granulation, drying & grinding)	1 (atomization)	
Resources	High consumption on energy and water, high CO ₂ emission	Utilization of the heat energy and liquid state of the blast furnace slag	
Particle shape	Angular	Spherical	
Flowability	Poor	Improved	
Reaction potential	Given	Given	

17

Thank you for your attention!

"Spray-Slag"
Processing of liquid
blast furnace slag

Maike Peters Aline Weicht peters@mpa-bremen.de a.weicht@iwt.uni-bremen.de

L. Achelis, F. Hlawatsch, S. Evers, V. Uhlenwinkel, D. Ufermann-Wallmeier, U. Fritsching

Leibniz Institute for Materials Engineering - IWT, Bremen, Germany
Particles and Process Engineering, University of Bremen, Germany
Department of Civil and Environmental Engineering, City University of Applied Sciences, Bremen, Germany

The financial support of the "Spray-Slag" project AUF0014 by the BAB Bremer Aufbau-Bank GmbH through the EFRE-Program (European Regional Development Fund) is gratefully acknowledged.

Influence of the primary gas

Melt flow behaviour

- → Higher impact between gas & melt
- → More powder < 90 µm

