
Modification of the sewage sludge ash P-mineralogy by thermo-chemical treatment with LF slags

L.H. Gronen, H-P. König, D. Algermissen, M. Gebser, K. Stephan, U. Siemann, W. Krumm & P. Drissen

Phosphate use and demand

- P₂O₅ is an essential nutrient for plant growth
- \rightarrow Widely used as fertilizer
- Production of 223 Mt of phosphate rock:

■ China ■ Morocco ■ USA ■ Finnland ■ Others

- \rightarrow P is CRM on 2020 list
- \rightarrow High demand and supply risk

- Sewage sludge ash is one major anthropogenic sink for P₂O₅
- → Concentration range: 5-25 wt.%

- P₂O₅ recycling from sewage mandatory in Germany from 2029
- Issue: Major P-Phases show very low plant availability:

Whitlockite (β -TCP) Ca₉(Mg,Fe)(PO₃(OH)PO₄)₆

Apatite Ca₅(PO₄)₃

Phosphate recycling by thermo-chemical treatment

Sludge2P concept:

- Production of usable gas (H₂,CO, CO₂, CH₄) and sewage sludge ash in integrated system (IPV)
- \rightarrow Gas delivers (most of) process energy
- Thermo-chemical treatment of SSA with LF-Slag
- \rightarrow Rich in Ca, fine disintegrated, often landfilled

Demanded reaction in the melt:

Whitlockite (β-TCP) Apatite

+ CaO + SiO₂ \rightarrow Silicocarnotite Ca₅[(PO₄)(SiO₄)](PO₄)

> Nagelschmidite Ca₃(PO₄)₂·2(α -Ca₂SiO₄)

Raw materials: SSA

- Ash from "standard" incineration in fluidized bed furnace ٠ \rightarrow rich in P, Si, Fe
- Major P-Mineral: Whitlockite (TCP)+/- Apatite ٠
- Zn, Pb and Cu \rightarrow mostly from precipitation (gutter and roofing) •

20000

10000

0

Intensity

SSA pure

 P_2O_5 : Fe₂O₂:

SiO₂:

 Al_2O_3 :

CaO:

12.6 wt. %

16.2 wt. %

37.8 wt. %

12.1 wt. %

12.0 wt.%

ð

Whl

Hem Anh

Whl

30

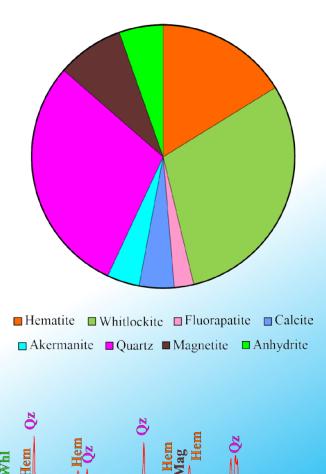
Whl

50

e

Position [°20] (Copper (Cu))

õ


20

Whl

Whl

10

Ni geogen/mining outcrops \rightarrow Siegenit (Ni,Co)₃S₄ ٠

Metal ppm

27

10

833

1,955

<mark>530</mark>

373

5,530

187

As

Cd

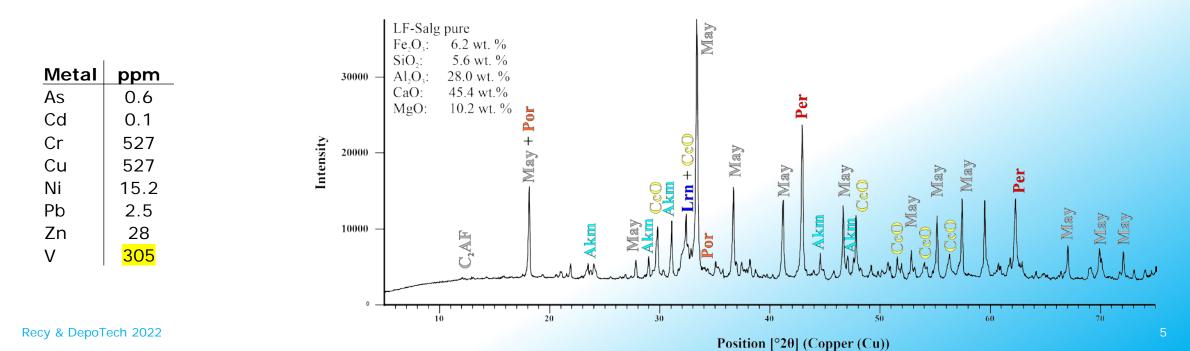
Cr

Cu Ni

Pb

Zn

V



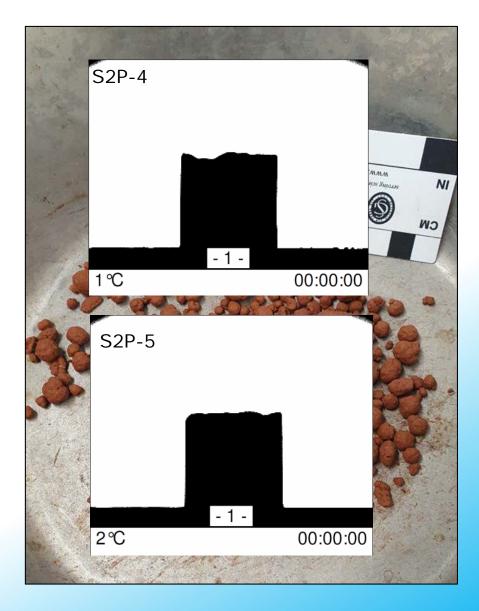
Raw materials: LF-Slag

- Fine disintegrating (γ -C₂S) slag from sec. metallurgy
- Mineralogy: mayenite, calcio-olivine, periclase, melilite

 \rightarrow rich in Ca + Al and Mg

• Trace metals as Cr, Cu and V from steel refining

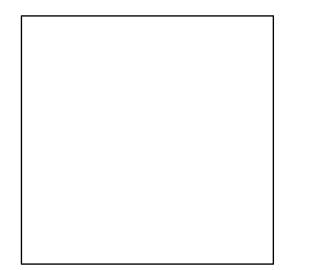
Receptes with CaO - Do they melt?

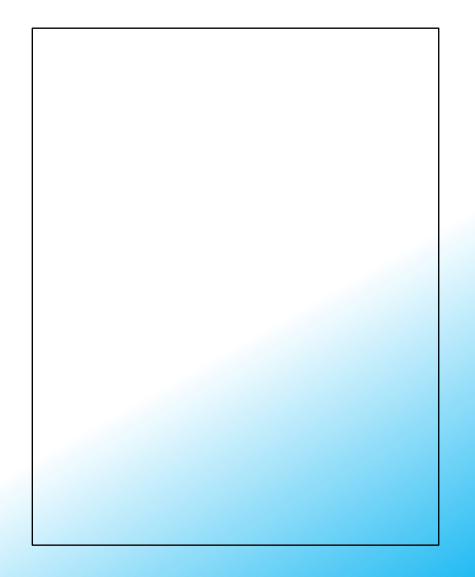

• 3 Mixtures of SSA + LF-Slag + Lime

S2P-1: 70 % SSA + 30 % Lime
→ Adding CaO exceeding Ca-Si-P stabilization
→ Melting: 1232 °C

S2P-4: 40 % SSA + 60 % LF-Slag
→ Adding CaO only by LF-Slag
→ Melting: 1298 °C

S2P-5: 50 % SSA + 40 % LF-Slag + 10 % Lime
→ Total CaO content equivalent to S2P-1
→ Melting: 1288 °C


 \rightarrow Low melting temp. decreases energy demand



Method: Furnace Experiments

- TBRC 40 L at MU Leoben
- MgO refractory, CH_4 - O_2 burner at λ =0.8 1.0
- Charing: 2x30 kg pellets at 1450 °C
- Tapping after reaching 1450 °C into ZrO₂ lined pots

Results: P-Mineralogy S2P-1

- Silicocarnotite can be identified as P-carrier
- \rightarrow Vitreous matrix within very fine skeletal grains (trachitic)

Ma

Mag

Sco

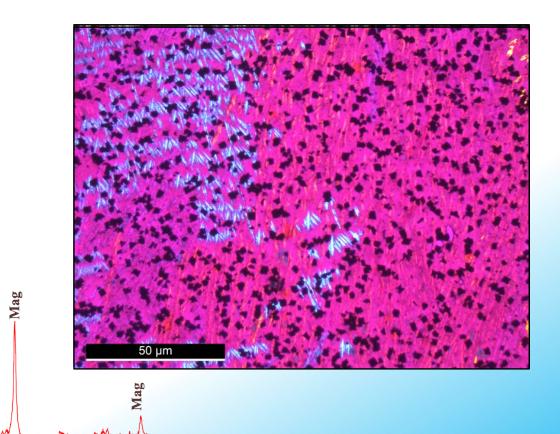
Mag

Sco

Sco

2θ] (Copper (Cu))

Mag


60

70

- Idiomorphic and disseminated magnetite
- Low amounts of melilite can be found

Mag Sco Akm

20

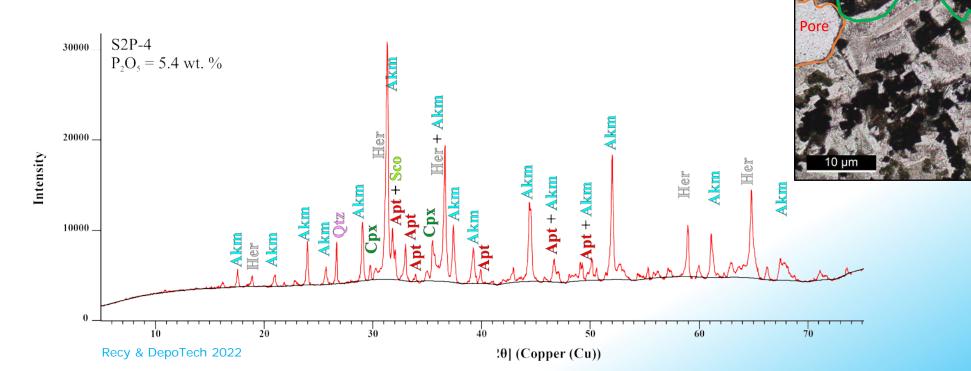
Intensity

S2P-1

 $P_2O_5 = 6.6$ wt. %

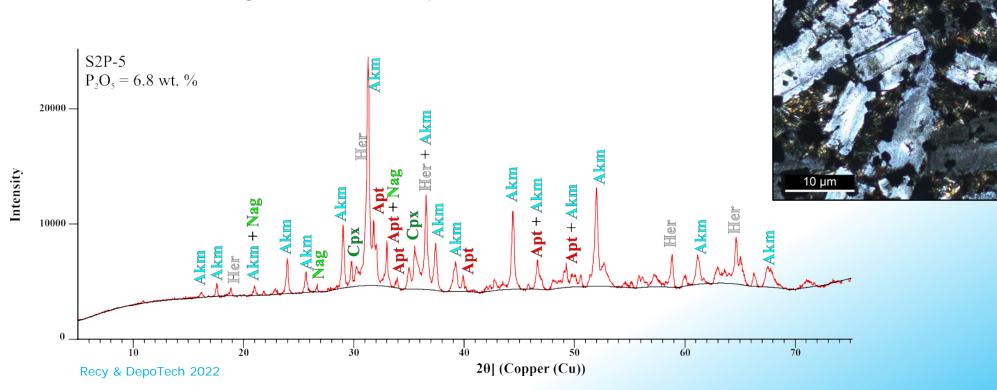
Sco

Recy & DepoTech 2022

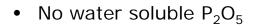

20000

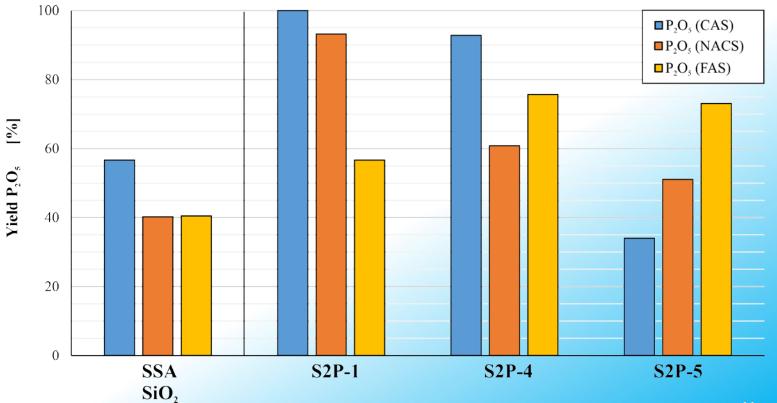
10000

Results: P-Mineralogy S2P-4


- As major P-carrier apatite and minor Sco were observed
- Melilite idiomorphic, interstitial voids filled with fine Cpx+Sco
- Porosity can be observed microscopically (10 μm)

Results: P-Mineralogy S2P-5

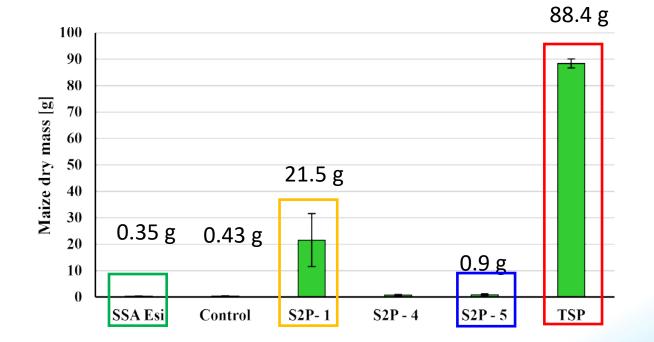

- Idiomorphic melilite is major mineral phase
- Fine pyroxene filling interstitial volume
- Idiomorphic spinel's, disseminated and fine $< 5 \ \mu m$
- As P-carrier nagelschmidtite and apatite were identified

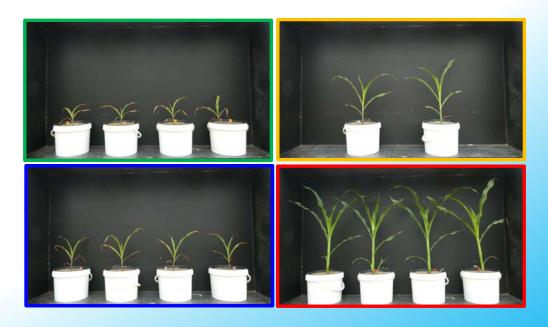


Results: Wet chemistry – P_2O_5 extraction methods

- P₂O₅ extraction was tested with 4 common extractants: Citric acid, neutral ammonium acetate, formic acid and deionized Water
- S2P-1 shows highest yield for CA and NAC
- S2P-5 CA below pure SSA
- Residual P₂O₅ yields >> SSA

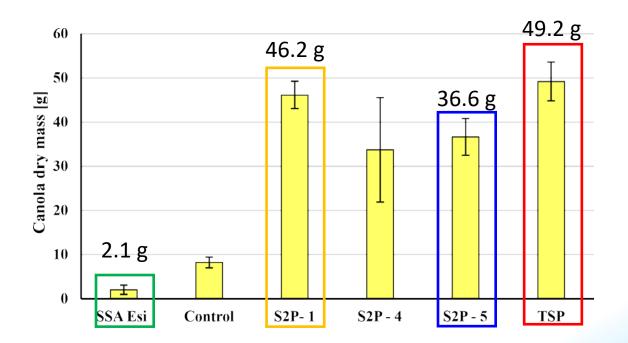
Results: Plant trials


- Pot trials conducted with Maize and Canola (oil seed rape)
- Both species show different sensitivity on P supply
- 3 products, pure SSA, TSP in 2 stages each plus control (no P_2O_5)
- → Stage 1: suboptimal supply of P
- → Stage 2: optimal supply of P
- Bio mass harvested after 3 month growth period
- Sampling of substrate and bio mass for chemical investigation



Results: Plant trials - Maize

- Maize show very poor plant growth due to selectivity of P₂O₅ uptake
- Application of pure SSA tend to imped growth in comparison to untreated control



Results: Plant trials - Canola

- Canola harvest quite better
- Pure SSA below control (again) \rightarrow malus elements ???
- S2P-1 within error interval of TSP

Conclusion

- Mixtures show sufficient melting at desired temperatures
- → Input data for energy balancing
- SSA + LF-Slag mixtures produce melilites during cool down
- → Depletion of Ca + Si from the melt inhibits the formation of Ca-Si-P
- \rightarrow Lowering the P₂O₅ extraction efficiency
- Mixtures of SSA, LF-Slag and Lime feature increased P₂O₅ availability

 \rightarrow LF-Slag is suitable as Ca-source for thermo-chemical treatment but limited by Mg and Al input

- Trace elements not critical and mostly inherited from the SSA
- ightarrow Analysis of substrate and bio mass not ready
- \rightarrow Something in the pure SSA hampers plant growth

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

DBFZ