Deponiemanagement und Klimaschutz Beitrag des Deponiewesens zur Reduzierung von Treibhausgasen

Dr. Ulrich Stock ehem. Landesamt für Umwelt Brandenburg

17. Recy & DepoTech Leoben

Einleitung

Beeinflussung der Entstehung und Vermeidung von Treibhausgasen durch das Deponiemanagement:

- 1. Nutzung von Deponiestandorten für die Errichtung von Anlagen zur Erzeugung erneuerbarer Energie
- 1.1 Solarenergieanlagen
- 1.2 Windkraftanlagen
- 2. Reduzierung der Entstehung von Deponiegasen aus dem biologischen Abbau organischer Bestandteile
- 2.1 durch Vorbehandlung organikhaltiger Abfälle (Verbrennung, mechanischbiologische Behandlung
- 2.2 Fassung und Verbrennung von Deponiegas
- 3. Einsatz CO₂-armer Technologien in
- 3.1 Deponiebetrieb
- 3.2 Deponieerrichtung

Tabelle 1: Treibhausgasemissionen aus der Abfallwirtschaft

	Treibhausgas- emissionen aus der Abfallwirtschaft *1)	entspricht von	Treibhausgas- emissionen Gesamt *1)	Anteil aus der Deponierung *1)
Deutschland 1990 *2)	38	3,04 %	1251	k.A.
Deutschland 2023 *3)	5,5	0,8 %	674	3,96 (72% von Spalte 2)
Brandenburg 2023 *4)	0,123	0,24 %	51,5	0,068 (55% von Spalte 2)

^{*1)} in Mio. t CO₂-Äqu.

Flächenpotential

Tabelle 2: Anzahl von Deponien in ausgewählten Territorien

Territorium	Anzahl der Deponien	Einwohner*1)	Bevölkerungs- dichte* ¹⁾	Einwohner pro Deponie
Brandenburg*)	5193 *2)	2,5 Mio.	88 Ew/km ²	Ca. 500
Flandern	2033 *2)*3)	6,7 Mio.	495 Ew/km ²	Ca. 3000
Niederlande	ca. 6000 *3)	17,9 Mio.	432 Ew/km ²	Ca. 3000
Deutschland*)	ca. 80.000 *4)	84,5 Mio.	236 Ew/km ²	Ca. 1000
Europäische Union	150.000 – 500.000 *5)	517,3 Mio. *6)	115 Ew/km ²	Ca. 1000
Österreich	→ ca. 9.000 ?	9,2 Mio.	109 Ew/km²	→ ca. 1000 ?

^{*)} einschließlich Altablagerungen im Rechtsregime des Bundes_Bodenschutzgesetzes

Flächenpotential

Annahmen:

- 80.000 Deponien in Deutschland- durchschnittliche Fläche von 2 ha pro Standort
- nutzbar nur 10% der Fläche
- →nutzbare Fläche 16.000 ha
- installierbare Leistung pro ha: 1 MW_p
 erzeugbare Energie bei 1 MW_p: 1000 MWh/a
- → Gesamtenergieerzeugung 16 TWh/a, entspricht 2% des deutschen Energiebedarfs im Jahr 2030.

Vermeidung von

6 Mio. t CO₂-Äqu. bei Ansatz der Energieerzeugung nach deutschem Strommix 18 Mio. t CO2-Äqu. bei Ansatz der Energieerzeugung aus Braunkohle

Übertragen auf Brandenburg:

- Flächenpotential 1000 ha
- Potential der Energieerzeugung 1 TWh/a
- Treibhausgaseinsparpotential 380.000 t bzw. 1,12 Mio. t CO₂-Äqu. pro Jahr.

Technische und rechtliche Rahmenbedingungen

- Funktionsfähigkeit der deponietechnischen Sicherungseinrichtungen (Oberflächenabdichtung, Entgasungsanlage) darf nicht durch Errichtung und Betrieb der PV-Anlage beeinträchtigt werden
- → <u>Bundeseinheitlicher Qualitätsstandard 7-4a</u> "Technische Anforderungen an die Errichtung von Photovoltaikanlagen auf Deponieoberflächenabdichtungssystemen"
- Genehmigungserfordernis:
- abfallrechtliche Genehmigung (Planfeststellung, Plangenehmigung), wenn die Errichtung und der Betrieb der PV-Anlage eine wesentliche Änderung der Deponie darstellen.
 Die abfallrechtliche Genehmigung konzentriert die Baugenehmigung.
- Dies ist dann <u>nicht der Fall</u>, wenn <u>keine für den Betrieb</u>, <u>die Stilllegung oder die Nachsorge</u> <u>erforderlichen Einrichtungen</u> beeinträchtigt wird (z.B. bei Bürgermeisterdeponien ohne Oberflächenabdichtung) → **Baugenehmigung** nach Baurecht mit B-Plan

Probleme:

- Ausschreibung nach EEG von Einspeise-Strommengen für Flächenanlagen ab 1 MW_D
- Ungünstige Standortlage von Deponien → schwieriger Anschluss an das Netz
- Pflicht zur Erstellung eines B-Plans bei Anlagen, die nicht in das Rechtsregime des Abfallrechts fallen → aufwendig für die Kommunen
- naturschutzfachliche Auflagen

Tabelle 3: **Solaranlagen auf Deponien in Brandenburg** (große Deponien in der Zuständigkeit des Landesamt für Umwelt)

Deponie	Fläche [ha] ^{*1)}	Deponie -fläche [ha] ^{*2)}	Leistung [kW _p] ^{*1)}	Produzierte Energie [MWh/a] ^{*3)}	Vermiedener ([t CO ₂ - von ⁴⁾	-
Coschen-Bresinchen	k.A. (10)	23	8412	8412	3197	9421
Eberswalde	k.A. (17)	18	14238	14238	5410	15947
Frankfurt/Oder	1,3	11	1072	1072	407	1201
Göritz	k.A. (0,5)	6	450	450	171	504
Hennickendorf	1,18	15	1908	1908	725	2137
Horstfelde	5	4	1749	1749	665	1959
Kyritz	2	10	931	931	354	1043
Lübben	4,16	8	749	749	285	839
Luckenwalde	9,2	20	8007	8007	3043	8968
Seelow	1,93	4	3070	3070	1167	3438
Senftenberg *6)	2,4	k.A.	4500	4500	1710	5040
Senzig	3,8	11,3	2795	2795	1062	3130
Wriezen	k.A. (2,2)	k.A.	2170	2170	825	2430

Tabelle 4: **Solaranlagen auf Deponien in Brandenburg** (sonstige Deponien)

Deponie	Fläche [ha] ^{*1)}	Deponie- fläche [ha] ^{*2)}	Leistung [kW _p] ^{*1)}	Produzierte Energie [MWh/a] ^{*3)}	vermiedener C [t CO ₂ -/ von ^{*4)}	
Schönfeld	2,8	3	2767	2767	1051	3099
Felgentreu	3,5	k.A.	1628	1628	619	1823
Falkensee	k.A. (3)	4	1934	1934	735	2166
Groß Ziethen*7)	k.A. (4)	60	2455	2455	933	2750
Mühlenbeck	5,5*6)	6	3159	3159	1200	3538
Golzow	k.A.(1)	k.A.	916	916	348	1026
Werneuchen	9,2	k.A.	4236	4236	1610	4744
Ruhlsdorf	0,68	k.A.	1450	1450	551	1624
Jänschwalde*8)	40	165	30592	30592	11625	34263

Soweit im Marktstammdatenregister dokumentiert, wurden auf Deponien in Brandenburg 22 Solaranlagen auf 126,6 ha errichtet, das entspricht 12,6 % des vermuteten Flächenpotentials.

Dadurch wurden Treibhausgase in Größenordnung von

- a) 37.693 t CO₂-Äqu. bei Ansatz der Stromerzeugung gemäß deutschem Strommix
- b) 111.080 t CO₂-Äqu. bei Ansatz der Stromerzeugung aus Braunkohle, vermieden, das entspricht 9,9 % des vermuteten Potentials.

Die installierte **Leistung der Solaranlagen auf Deponien in Brandenburg** beträgt etwa **99 MW**_p, das sind etwas weniger als **2%** der installierten **Gesamtleistung von Solaranlagen in Brandenburg (Stand Ende 2022: 5419 MWp)**.

Zum Vergleich:

Dies entspricht dem jährlichen CO₂-Ausstoß einer Stadt in Österreich mit

- a) 29.700 Einwohnern (Ansatz: deutscher Strommix)
- b) 87.600 Einwohnern (Ansatz: Erzeugung von Strom aus Braunkohle) *1)

Deponie Eberswalde*1)

Deponie Horstfelde*2)

Deponie Kyritz*3)

Deponie Mühlenbeck*4)

- *1) Kreiswerke Barnim, kreiswerke-barnim.de
- *2) REST GmbH, restgmbh.de
- *3) repowermap.org
- *4) sunfarming.de

Flächenpotential

- Die Errichtung von WKA unterliegt den Restriktionen der Landesplanung.
- →Brandenburg: Ausweisung von Windeignungsgebieten in Regionalplänen "Windenergienutzung", die Errichtung von WKA außerhalb der Windeignungsgebiete war unzulässig
- 2012 lagen von 102 Deponien in der Zuständigkeit des LfU 3 in Windeignungsgebieten
- Auch zukünftig werden Deponien nicht in solchen Gebieten liegen, die von der Landesplanung als besonders geeignet für die Errichtung von Windkraftanlagen ausgewiesen werden.

Technische und rechtliche Rahmenbedingungen

Technische Herausforderungen:

- Beherrschung der Setzungen → Vorrichtungen zum Ausgleich von Setzungsdifferenzen erforderlich
- Vermeidung von Schäden des bzw. Einbindung in das Oberflächenabdichtungssystem

Rechtliche Rahmenbedingungen:

- Immissionsschutzrechtliche Genehmigung ab einer Gesamthöhe von 50m erforderlich
- Wesentliche Änderung der Deponie → abfallrechtliche Genehmigung wohl auch erforderlich

Tabelle 5: Windkraftanlagen auf Deponien in Deutschland (soweit dem Autor bekannt)

Deponie	Leistungsdaten	Erzeugte Strom- menge pro Jahr	Status
Windberg Karlsruhe*1)	2002: 1 x 1,5 MW, 2 x 0,75 MW 2015: 1 x 2 MW 1 x 1,5 MW	10 GWh/a	In Betrieb
Georgswerder Hamburg *2)	1 x 1,5 MW 1 x 0,5 MW 2 x 0,15 MW	5 GWh/a	In Betrieb, errichtet 1992 - 2004
Großlappen München-Fröttmaning	1 x 1,5 MW	> 2 GWH/a	In Betrieb
Neu-Wulmstorf	2 x 0,6 MW	1,9 GWh/a	2022 stillgelegt (20 Jahre Betrieb)
Nord-West Freimann (München)	1 x 3,5 MW	7 GWh/a	In Betrieb seit 2021
Blocklanddeponie Bremen	4 x 2 MW	18,8 GWh/a	In Betrieb seit 2010
Kolkerhofweg Mülheim a.d. Ruhr	1 x 2,3 MW	5 GWh/a	In Betrieb seit 2018
Eberswalde Ostend 1 x 10 kW*3)		15 MWh/a	In Betrieb seit 2019

Soweit der Autor recherchieren konnten, wurden in Deutschland 19 Windkraftanlagen auf 8 Deponien errichtet. Diese erzeugten im Bezugsjahr 2021 50 GWh Strom.

Das sind 0,04% der 2021 aus Wind erzeugten Strommenge in Deutschland.

Es konnten dadurch

19.000 t CO₂ (Ansatz: deutscher Strommix) bzw.

56.000 t CO₂ (Ansatz: Stromerzeugung aus Braunkohle)

vermieden werden.

Zum Vergleich:

Dies entspricht dem jährlichen CO₂-Ausstoß einer Stadt in Österreich mit

- a) 14.700 Einwohnern (Ansatz: deutscher Strommix)
- b) 43.300 Einwohnern (Ansatz: Erzeugung von Strom aus Braunkohle) *1)

Für die Erzeugung von Windenergie stellen Deponien kein relevantes Standortpotential dar.

Windberg Karlsruhe

Georgswerder

Deponie Großlappen

Deponie Eberswalde (kleine Windkraftanlage) Märkische Oderzeitung/Burckhardt 23.05.2019

Eine Deponie mit einer Ablagerungsmenge von 2 Mio. t unbehandelten Siedlungsabfall hat ein Deponiegaspotential von etwa 500 Mio. m³ Deponiegas.

Das entspricht einem Treibhausgaspotential von 6 Mio. t CO₂-Äqu.*1), das über einen Zeitraum von 50 Jahren (und länger) freigesetzt wird.

Das entspricht etwa der Menge, die 4,73 Mio. PKW pro Jahr ausstoßen. PKW-Flotte Österreichs: 5,19 Mio.

Maßnahmen zur Verhinderung der Entstehung/Emission von Treibhausgasen auf/aus Deponien

Vorbehandlung von Abfällen Errichtung von Deponiegasfassungs- und –verwertungsanlagen Oberflächenabdichtungen erhöhen den Erfassungsgrad

Tabelle 6: Beispielhafte Darstellung erfasster Deponiegasmengen

			Treibhausgasreduktion/-vermeidung [t CO ₂ -Äqu.] durch		
Deponie	Ablagerungsmenge [m³] im Betriebszeitraum	Gasmenge [m³] im Zeitraum*¹)	Verbrennung*2)	Verstromung bei Ansatz*3)	
		mr zomadni /		Deutscher Strommix	Braunkohle- strom
Brück	490.000 1975-2000	3.785.691 2000-2013	37.478	2.158	4.240
Fohrde	1.600.000 1981-2005	6.327.155 2008-2013	62.639	3.606	10.630
Luckenwalde	2.100.000 1940-2003	31.392.405 2003-2013	310.785	17.894	52.739

In den 11 Jahren nach Aufbringung einer konvektionsdichten Oberflächenabdichtung wurden auf der Deponie Luckenwalde ca. 31,4 Mio m³ Deponiegas erfasst. Durch die Verbrennung und die Verstomung dieser Gase konnte die Entstehung von bis zu 363.500 t CO₂-Äqu. vermieden werden (ca. 33.000 t CO₂-Äqu. pro Jahr, entspricht dem jährlichen CO₂-Ausstoss einer österreichischen Stadt mit 25.570 Einwohnern.

Durch das Verbot der Ablagerung organischer Abfälle ist der Nachschub an organisch abbaubarem Material seit 2005 unterbrochen. Dadurch nehmen sowohl die gebildete und förderbare Deponiegasmenge als auch der Methananteil ab. Der Schwachgasanteil (Methangehalt unter 35%) macht aber noch ca. 30% des Gesamtdeponiegasaufkommen aus, so dass auch die Fassung dieser Gasanteile erforderlich sind. Dazu müssen die Deponiegasanlagen ertüchtigt und umgerüstet werden *1).

Beispielhaft sind in der folgenden Tabelle Maßnahmen auf Brandenburger Deponien aufgeführt. Es handelt sich um solche, die durch Nutzung von Mitteln des Europäischen Fond für regionale Entwicklung gefördert wurden.

Tabelle 7: Maßnahmen zur Anpassung von Deponiegasanlagen an die Schwachgasphase

Deponie	Maßnahme	Vermiedene Treibhausgas- emissionen *1)
Eberswalde	Anpassung der Entgasungsanlage an Schwachgasanfall	30.607
Schöneiche	Oberflächenabdichtung 8,8 ha, Anpassung der Entgasungsanlage an Schwachgasanfall	123.056
Lübben	Anpassung der Entgasungsanlage an Schwachgasanfall	13.989
Fresdorfer Heide	Anpassung der Entgasungsanlage an Schwachgasanfall	21.438
Forst	Errichtung einer Entgasungsanlage für Schwachgas	10.497
Schwanebeck (BAR)	Oberflächenabdichtung 12,9 ha	8.817
Alte Ziegelei	Oberflächenabdichtung 10,17 ha	19.334
Frankfurt	Anpassung der Entgasungsanlage an Schwachgasanfall	8.061
Schwanebeck (HVL)	Oberflächenabdichtung 5,0 ha, Integration der vorhandenen Entgasungsanlage	7.563
Herzberg	Umrüstung von Hochtemperaturfackel auf Schwachgasfackel	11.523
Hennersdorf	Umrüstung von Hochtemperaturfackel auf Schwachgasfackel	8.894
Guben	Umrüstung der Gasverbrennung von Hochtemperaturfackel auf RTO mit Aerobisierung der Abbauvorgänge durch kontrollierte Übersaugung	39.235

Einsatz von Transport- und Betriebsfahrzeugen mit klimafreundlichem Antrieb

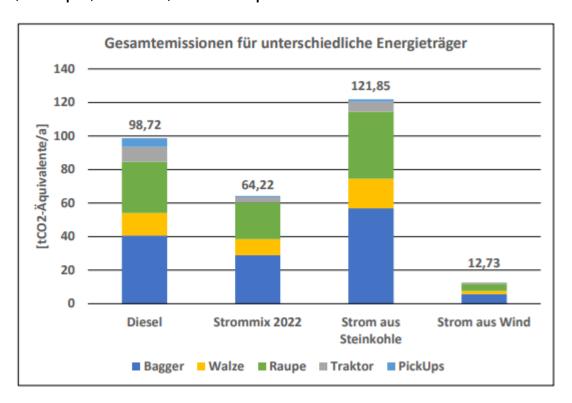
In der Region **Berlin-Brandenburg** fallen pro Jahr ca. **10 Mio. t mineralische Abfälle** an. Der Transport dieser Abfälle erzeugt **mehrere Zehntausend t** CO_2^{*1}).

Thermische Verwertungsanlage mit Jahresleistung von 277.000 t Input:

CO₂-Erzeugung Anlieferung: 915 t *2)

CO₂-Erzeugung bei 100% Rückfahrt leer: 1.647 t *2)

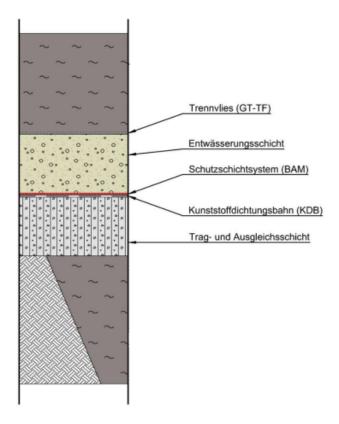
(nur Anlieferer mit mindestens 5.000 t, entspricht 80% der Anlieferungen)

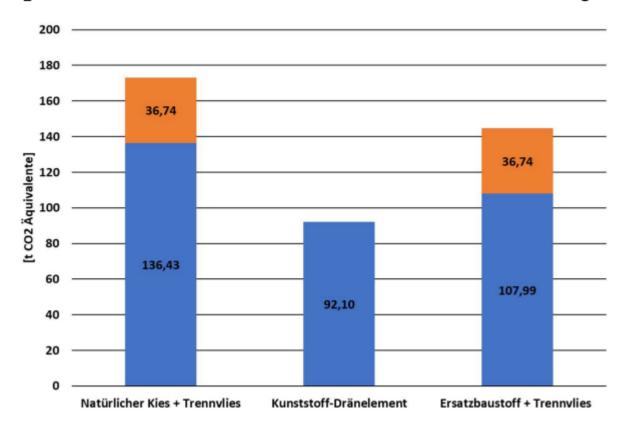

Die Stadt P. transportiert ihre behandlungsbedürftigen Siedlungsabfälle (35.000 t/a) zur thermischen Behandlung in die Anlage der Firma R. nach S.

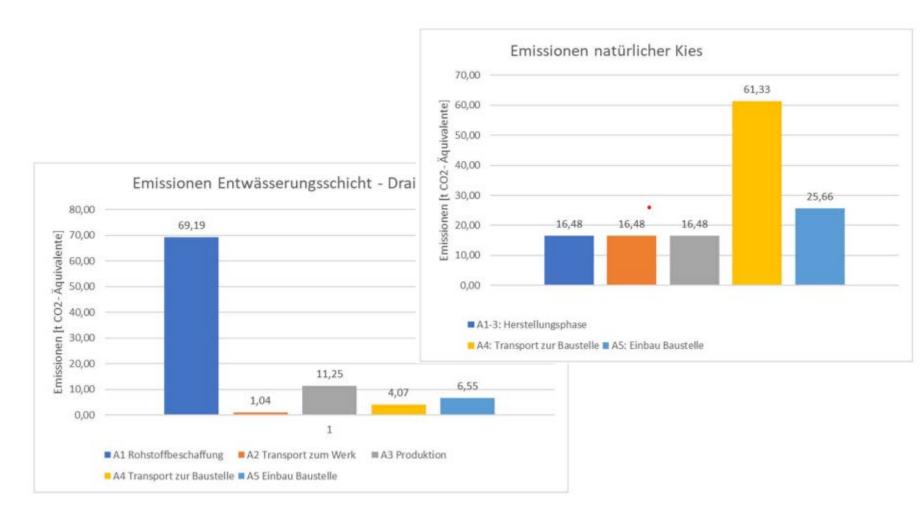
Transportart	Treibhausgasemissionen in t CO ₂		
LKW, Diesel	342,7 * ³⁾		
LKW, elektrisch	217,1*4)	5,1 ^{*8)}	
Bahn, Diesellok	71,6 ^{*6)}		
Bahn, E-Lok	52,0 ^{*7)}	1,2 ^{*9)}	

Einsatz von Transport- und Betriebsfahrzeugen mit klimafreundlichem Antrieb *1)

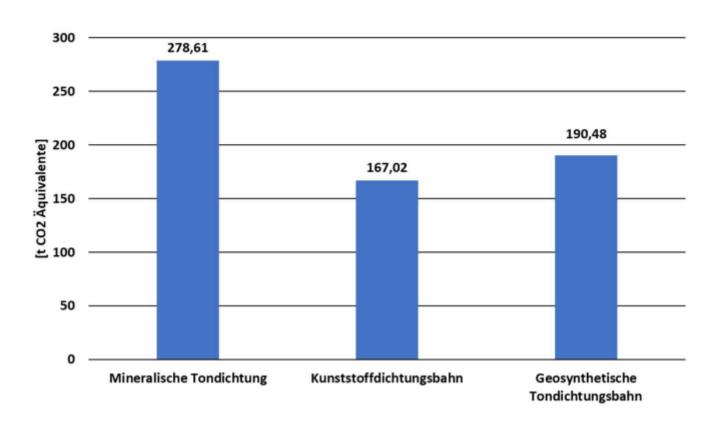
LESNY/VIEFHAUS*1):

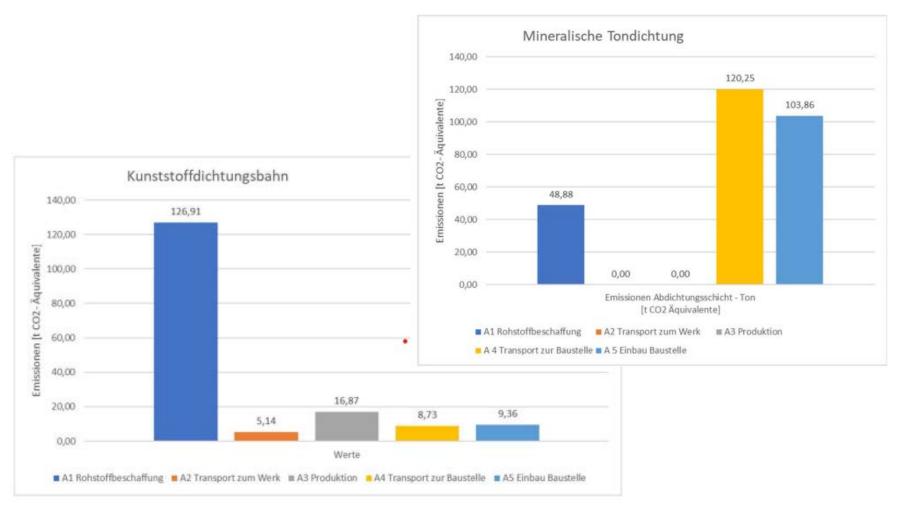

Vergleich der CO2-Emissionen für den Fuhrpark einer Werksdeponie Bagger, Walze, Raupe, Traktor, 2 Pick-ups


LESNY/VIEFHAUS *1):


Deponieerweiterung nach der Konstruktionsweise "Deponie auf Deponie"

- Trag-, Ausgleichsschicht gemäß BQS 4-1
- Kunststoffdichtungsbahn mit BAM-Zulassung
- Schutzschichtsystem gemäß BAM-Richtlinie
- Mineralische Entwässerungsschicht gemäß BQS 3-2




CO₂-Gesamtemissionen der 3 Varianten der Entwässerungsschicht

CO₂-Gesamtemissionen - Varianten der Abdichtungskomponente

Erläuterungen I

Erläuterungen zu Tabelle 1 (Folie 3):

- *1) Angaben in Mio. t
- ^{*2)} Treibhausgasemissionen aus der Abfallwirtschaft, Umweltbundesamt, Internet, 2015
- *3) Umweltbundesamt: Berechnung der Treibhausgasemissionsdaten für das Jahr 2022 gemäß Bundesklimaschutzgesetz, Begleitender Bericht, Kurzfassung vom 15. März 2023
- ^{*4)} Landesamt für Umwelt Brandenburg: Klimagasbilanz für das Land Brandenburg, 2023

Erläuterungen zu Tabelle 2 (Folie 4):

- *1) Wikipedia
- *2) objektscharfe Erhebungen in der Region
- *3) Interreg-Projekt COCOON, Mapping-Report, unveröffentlicht
- *4) Prof. Martin Krahnert, Universität Stuttgart, Deutschlandfunk am 11.04.2019, Internet
- *5) Antwort der EU-Kommission auf eine Kleine Anfrage der Abgeordneten Hilde Vautmans (ALDE) A.d.A.: Die Wahrheit dürfte wohl eher bei den 500.000 liegen.
- *6) einschließlich Großbritannien und Nordirland

Erläuterungen zu Tabellen 3 und 4 (Folien 8 und 9):

- *1) Marktstammdatenregister (soweit nicht anders vermerkt). Soweit für die Fläche keine Angaben enthalten waren, wurden diese plausibel geschätzt. Die Flächenangaben des Marktstammdatenregister stehen nicht immer in plausiblem Verhaltnis zur installierten Leistung.
- *2) andere Quellen (B-Pläne, Projektbeschreibungen etc.)
- *3) Angaben über ptoduzierte Strommengen enthält das Marktstammdatenregister nicht. Es wird davon ausgegangen, dass pro 1 MW_P installierte Leistung 1000 MWh pro Jahr generiert werden können.
- *4) Ansatz: 380 g CO₂ pro kWh gemäß deutschem Strommix 2023, Quelle: Umweltbundesamt
- *5) Ansatz: 1120 g CO₂ pro kWh bei Stromerzeugung aus Braunkohle, Quelle: ICHA, LAUF (Umweltbundesamt)

Erläuterungen II

- *6) Projektbeschreibung aus dem Internet
- *7) Altablagerung im Rechtsregime des Bundesbodenschutzgesetzes
- *8) Aschedeponie eines Braunkohlekraftwerks im Rechtsregime des Bundesberggesetzes

Erläuterungen zu Folie 10:

österreichische Werte

*1) 177 g CO₂/km (Diesel 186g/km – 50%, Benzin 181g/km – 42%, Elektro 0 – 3%, Hybrid 94g/km – 5%) 12.900 km/a, 566 PKW/1000 Einwohner

Erläuterungen zu Folie 14:

- ^{*1)} Thomas MÜLLERSChÖN: Vom Müllberg zum Energieberg, 7. Leipziger Deponiefachtagung, Leipzig 2011, Tagungsband
- *2) Maren OTTE: Windenergie auf der Deponie Georgswerder eine Erfolgsgeschichte, Windenergietage 2023, Internet
- *3) kleine Windenergieanlage, Anlagen dieses Typs könnten für Deponieoberflächen eine Alternative darstellen

Erläuterungen zu Folie 17:

*1) Berechnung mit der Gleichung nach dem Modell RETTENBERGER-TABASARAN

 $G = M \cdot 1,868 \cdot C_{org} \cdot (0,014 \cdot T + 0,28) \cdot (1 - 10^{-kt})$

mit

G – Gesamtmenge des gebildeten Deponiegas in m³, Beispiel: 502.118.400

M – Ablagerungsmasse in t, Beispiel: 2.000.000

C_{org} – biologisch abbaubarer Kohlenstoffanteil pro Tonne Abfall in kg, Beispiel: 160

T - Temperatur in Grad Celsius, Beispiel: 40

k – Abbaukonstante, Beispiel: gleichgültig

t – Zeit seit Ablagerung in Jahren minus 1, hier: unendlich \rightarrow 10^{-kt} \rightarrow 0

Erläuterungen III

Dichte Methan: 0,66 kg/m³, Dichte Kohlendioxid: 1,98 kg/m³, Treibhausgaspotential Methan: Kohlendioxid x 28 Deponiegas (60% Methan, 40% Kohlendioxid): 11,88 kg CO₂-Äqu./m³

Erläuterungen zu Tabelle 6 (Folie 18):

- *1) Bachelorarbeit Patrick OETTEL, Bergakademie Freiberg, 2015
- *2) Reduktion durch Verbrennung auf 1,98 kg CO₂-Äqu./m³, d.h. um 9,9 CO₂-Äqu./m³
- *3) Heizwert Deponiegas 5 kWh/m³, Wirkungsgrad Deponiegasverstromung 30% → 1,5 kWh/m³ Deponiegas

Erläuterungen zu Folie 19:

*1) Christoph BRÖCKER: Energetische Nutzung von Deponiegas in der Schwachgasphase am Beispiel des Einsatzes von Mikrogasturbinen, 8. Leipziger Deponiefachtagung, Leipzig 2012, Tagungsband

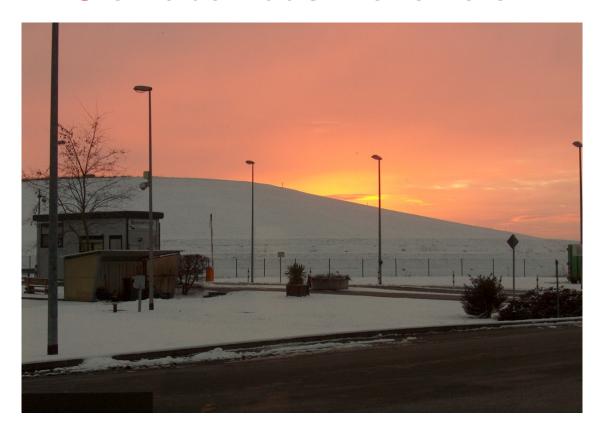
Erläuterungen zu Tabelle 7 (Folie 20):

*1) in t CO₂-Äqu.

Es wurde verlangt, dem Antrag ein Gutachten beizufügen, in dem die vermiedene Treibhausgasemissionen ermittelt werden. Die Angaben aus den Gutachten wurden für den Vortrag übernommen.

Erläuterungen zu Folie 21 mit Tabelle:

- *1) Annahme: Transportentfernung von Anfall- über Behandlungs- zum finalen Entsorgungsort durchschnittlich 80 km, 400.000 Fahrten, Rückfahrt 100% leer, Verbrauch 30 I Diesel/100 km voll, 24 I Diesel/100 km leer, 1 I Diesel erzeugt 2,65 kg CO₂ → 45.800 t CO₂ insgesamt
- *2) Es sind 8624 Fahrten (25 t je Fahrt erforderlich), bei denen 1,15 Mio. km zurückgelegt werden. Angaben (2023) zu Herkunftsorten und Anliefermengen liegen dem Autor vor.
- *3) Entfernung von P. nach S. 170 km, Rückfahrt 100% leer, 1400 Fahrten erforderlich, siehe auch *1)


Erläuterungen IV

- *4) wie *3), Leistungsaufnahme 1,2 kWh/km, 0,38 kg/kWh deutscher Strommix
- *5) wie *3), 0,009 kg/kWh Windstrom
- *6) 50 Fahrten erforderlich (28 Container je 25 t), Verbrauch 300l/100 km, 2,65 kg CO₂/l Diesel, Rückfahrt nicht leer
- *7) leider nur theoretisch: die Strecke ist nicht durchgehend elektrifiziert, Leistungsaufnahme 15,2 kWh/km, wie *4)
- *8) wie *5)

Erläuterungen zu Folie 23:

- *1) Die nachfolgenden Folien bis zum Ende des Vortrags beinhalten Darstellungen aus dem Vortrag LESNY/VIEFHAUS
- *2) Carsten LESNA, Dr. Hanna VIEFHAUS "Ökobilanzierung als zusätzliches Entscheidungskriterium bei der Planung und Genehmigung von baulichen und betrieblichen Maßnahmen im Deponiebau", 20. Deponiefachtagung Leipzig, 12./13.03.2024, Tagungsband

Sie haben das Ziel erreicht

Vielen Dank für die Aufmerksamkeit!

Ulrichstock.tus@freenet.de