

Background (1)

- 12 composting plants constructed in Uganda within the framework of the UN Clean Development Mechanism (CDM)^[1]
- Mixed solid waste ends up in composting plants due to lack of separation at the source
- Rejects dumped into plant's surroundings or landfilled

Background (2)

- Utilisation of refuse-derived fuels (RDF) produced from municipal solid waste in Uganda's cement industry not yet very well-established^[2], coal predominantly used fuel^[3]
- Utilisation of RDF can lead to a reduction of fossil CO₂ emissions
- Sieving rejects of CDM composting plants possibly suitable as RDF

Scope

- Evaluate the energetic potential of the residuals of two CDM composting plants
- Provide RDF for Uganda's cement industry and reduce fossil CO₂ emissions
- Minimise pollution of plants' surroundings

Methods

Sampling – how it was done

Fractions

- Plastics
 - Kaveera
 - Foils
 - PVC
 - PET
 - Hard plastics
 - Foamed plastics
 - Other plastics
- Textiles
- Hair
- Glass
- Organics

- Metals
- Composites
- Hazardous/Medical
- Liquids
- Rubber
- Paper/Cardboard
- Batteries
- Electronics
- Wood
- Others (incl. Stones)
- Mixed sample for Hg measurements

RDF Fractions

- Plastics
 - Kaveera
 - Foils
 - PVC
 - PET
 - Hard plastics
 - Foamed plastics
 - Other plastics
- Textiles
- Hair
- Glass
- Organics

- Metals
- Composites
- Hazardous/Medical
- Liquids
- Rubber
- Paper/Cardboard
- Batteries
- Electronics
- Wood
- Others (incl. Stones)
- Mixed sample for Hg measurements

Sample preparation and analysis

Analysis

- Heavy metals
 - XRF
 - ICP-OES
 - Hg analyser
- Heating value
 - Calculated based on material composition

$$LHV_{w} = 22,1 * Pa + 28,1 * Pl + 24,6 * Tx + 12,7 * Wd + 6 * Fo + 57,4 * Ru + 17,2 * Mi^{[5]}$$

- Chlorine content
 - Calculated via molar masses using PVC share
 - XRF results

Classification

ISO 21640 Solid recovered fuels – Specification and classes^[6]

Classification property	Ctat magging	Unit	Classes				
	Stat. measure	. measure Onit	1	2	3	4	5
Heating value (NCV)	mean	MJ/kg	≥25	≥20	≥15	≥10	≥3
Chlorine (Cl)	mean	wt%	≤0,2	≤0,6	≤1	≤1,5	≤3
Mercury (Hg)	mean	mg/MJ	≤0,02	≤0,03	≤0,05	≤0,1	≤0,15
	80th percentile	mg/MJ	≤0,04	≤0,06	≤0,1	≤0,2	≤0,3

Results and Discussion

Mass share main fractions

Fractions	Plant 1	Plant 2
Plastics	29%	38%
Textiles	10%	10%
Hair	2%	3%
Glass	1%	2%
Organics	44%	33%
Metals	1%	1%
Composites	0,5%	0,3%
Hazardous/Medical	0,2%	0,1%
Liquid	0,1%	0,05%
Rubber	1%	3%
Paper/Cardboard	0,7%	0,2%
Batteries	0,05%	0,1%
Electronics	0,4%	0,2%
Wood	2%	2%
Others (incl. Stones)	7%	8%

Composition similar in both plants!

Share of potential RDF

Plant 1 21% RDF

■ RDF [kg] ■ non-RDF [kg] 349 kg m_{total, wet}

Fraction	Plant 1
Kaveera	16%
Foils	5%
PET	0,4%
Bottle caps	0,2%
Hard plastics	2%
Glass	1%
Metals	1%
Paper/Cardboard	0,6%
Foamed plastics	0,3%
Other plastics	5%
Textiles	10%
Hair	2%
Composites	0,5%
Rubber	1%
Wood	2%
Organics	44%
Hazardous/Medical	0,2%
Liquids	0,06%
Batteries	0,04%
Electronics	0,4%
PVC	0,2%
Stones	2%
Others	6%

Share of potential RDF

Plant 2 22% RDF

■ RDF [kg] ■ non-RDF [kg] 223 kg m_{total, wet}

Fraction	Plant 2
Kaveera	23%
Foils	5%
PET	2%
Bottle caps	0,2%
Hard plastics	2%
Glass	2%
Metals	1%
Paper/Cardboard	0,2%
Foamed plastics	0,2%
Other plastics	4%
Textiles	10%
Hair	3%
Composites	0,3%
Rubber	3%
Wood	2%
Organics	33%
Hazardous/Medical	0,1%
Liquids	0,05%
Batteries	0,1%
Electronics	0,2%
PVC	0,1%
Stones	3%
Others	6%

Mass shares within RDF

Fraction	Plant 1	Plant 2
Textiles	47%	45%
Hair	9%	14%
Composites	2%	1%
Rubber	6%	11%
Wood	9%	8%
Foamed plastics	1%	0,9%
Other plastics	26%	21%

- Within potential RDF, Textiles have highest share, followed by Other plastics and Hair
- Mass shares of both plants similar

Heavy metal content of RDF

	Plant 1 [mg/kg]	Plant 2 [mg/kg]	Limit [mg/kg]
Cr	255,74	172,52	275
Pb	76,74	46,83	220
Со	6,52	4,67	16,5
Sb	14,73	14,60	77
Cd	3,40	1,62	2,53
As	4,35	4,30	22
Ni	71,72	49,91	110
Hg	0,04	0,03	8,25

- Heavy metal results compared to the limits given in the Austrian Directive on Waste Incineration for the utilisation of RDF in the cement production
- Cd levels in Plant 1 above limit, most Cd found in Other plastics and Rubber

Heating value of RDF

	Heating value [MJ/kg]
Plant 1	11
Plant 2	12

- LHV lower than expected
- RDF can probably still be used in secondary firing system, for utilisation in main burner LHV ≥20 MJ/kg necessary^[7]

Sara Neuburg 03.12.2024 18

Chlorine content

	m _{RDF dry, excl. Organics} [kg]	m _{CI} [kg]	Cl content (whole sample)	Cl content (RDF)	
Plant 1	35,66	0,323	2%	0,5%	
Plant 2	34,92	1,548	3%	1,1%	

- Highest Cl levels found in Other plastics due to PVC, should be removed before utilisation
- Cl content should be below 1%

Classification

Classification property	Stat maasura	Linit	Classes				
	Stat. measure	Unit	1	2	3	4	5
Heating value (NCV)	mean	MJ/kg	≥25	≥20	≥15	≥10	≥3
Chlorine (CI)	mean	wt%	≤0,2	≤0,6	≤1	≤1,5	≤3
Mercury (Hg)	mean	mg/MJ	≤0,02	≤0,03	≤0,05	≤0,1	≤0,15

RDF Plant 1: NCV4, Cl2, Hg1 RDF Plant 2: NCV4, Cl4, Hg1

Conclusion and Outlook

Conclusion

- 21% of the sieving residuals of Plant 1 and 22% of Plant 2 theoretically suitable as RDF
- Potential RDF might be used in secondary firing system after Cd and Cl levels are lowered
- Utilisation of RDF can help reduce pollution in surrounding environments
- Substituting coal with RDF reduces fossil CO₂ emissions of Uganda's cement industry

Outlook

- Samples from second sampling campaign during dry season currently under investigation
- Minor differences between samples in terms of composition
- Fossil and biogenic CO₂ emissions will be determined using TU Wien developed adapted balance method

Sources

[1] Kabasiita, J. K., Opolot, E., & Malinga, G. M. (2022). Quality and Fertility Assessments of Municipal Solid Waste Compost Produced from Cleaner Development Mechanism Compost Projects: A Case Study from Uganda. *Agriculture (Switzerland)*, 12(5). https://doi.org/10.3390/AGRICULTURE12050582

[2] Lee, R. D. (2019). Evaluating Uganda's waste management system for the production of refuse-derived fuel (RDF) and its potential implementation in the country's growing cement industry. https://doi.org/10.34726/hss.2019.66871

[3] Verma, J. (2023). Uganda's upturn awaits.

[4] Wojtacha-Rychter, K., Kucharski, P., & Smolinski, A. (2021). Conventional and alternative sources of thermal energy in the production of cement—an impact on co2 emission [Article]. Energies (Basel), 14(6), 1539. https://doi.org/10.3390/en14061539

[5] Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. *Renewable and Sustainable Energy Reviews*, *36*, 107–122. https://doi.org/10.1016/J.RSER.2014.04.024

[6] DIN Deutsches Institut für Normen. (2022). Solid recovered fuels - Sample preparation (ISO 21646:2022). www.beuth.de

[7] Rotter, S. (2011). Incineration: RDF and SRF - Solid Fuels from Waste. In T. H. Christensen, *Solid Waste Technology & Management* (pp. 486-501). Chichester: John Wiley & Sons, Ltd.

Thank You!

Sara Neuburg, TU Wien

sara.neuburg@tuwien.ac.at
Institute of Water Quality and Resource
Management
Research Unit of Waste and Resource
Management