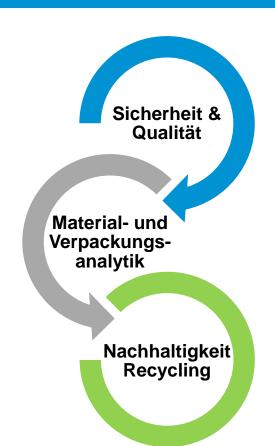


Recyclingfähigkeit von Verpackungen

- Potentiale der individuellen, graduellen Bewertung

Angelika Wlodarczyk, MSc

OFI – Österreichisches Forschungsinstitut für Chemie und Technik Abteilung Verpackung, Recycling und Gefahrgut, Wien


Forschungsteam: Angelika Wlodarczyk, Elisabeth Pinter, Michael Krainz, Anja Fredriksson, Joachim Christiani, Sandra Beckamp, Michael Washüttl

Konferenz Recy & DepoTech, 21.11.2024, Leoben

OFI – Österreichisches Forschungsinstitut für Chemie und Technik

Unabhängiges, akkreditiertes, österreichisches Forschungs- und Prüfinstitut mit Schwerpunkt Materialanwendungen und Bautechnik

→ Abteilung Verpackung, Recycling und Lebensmittel

Prüfung, Begutachtung, Entwicklung und Beratung im Verpackungsbereich

- √ 30 Jahre Verpackungsexpertise
- ✓ Weitreichende Laborinfrastruktur und ein interdisziplinäres Team
- ✓ Spezialisierung auf Recyclingfähigkeit, Nachhaltigkeit, Risikobewertung und Produktschutz
- ✓ F&E-Expertise Mitwirkung und Leitung nationaler und internationaler Industrieprojekte
- ✓ Transparente, quantitative Bilanzierung der technischen Recyclingfähigkeit nach cyclos-HTP (CHI)

Anforderungen an Verpackungen

Multiple Anforderungen seitens Füllgut, Handel und Politik:

- ✓ Produktschutz
- ✓ Wiederspiegelung individueller Vorzüge des Produktes
- ✓ Steigerung des Wiedererkennungswerts von Unternehmen

Aber auch:

Autorialreduktion

Wachhaltigkeit

Wiederverwendung

Recyclingfähigkeit

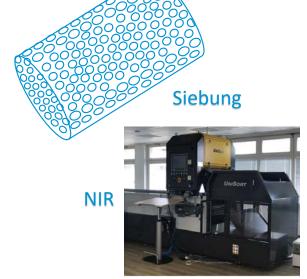
Green Deal: Verpackungen müssen bis 2030 recyclingfähig oder wiederverwendbar sein

PPWR: Verpackungen müssen eine Recyclingfähigkeit von mindestens 70 % (2030) bzw. 80 % (2038) aufweisen, um auf EU-Markt zu bleiben.

Graduelle Abstufungen der Recyclingfähigkeit bilden Basis für die Ökomodulation (PPWR IV, 27.11.2024 in Wien)

→ Anreiz für hochgradig recyclingfähige Verpackungen

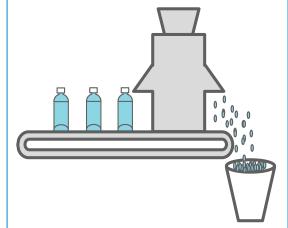
Wann ist eine Verpackung recyclingfähig?


Sammlung

Sammlung von Leicht- und Metallverpackungen ab 2023

Orneinsäme Sammlung von Leicht and Metallverpackungen Greenne Sammlung von Leicht and Metallverpackungen Greenne Sammlung von Leicht and Metallverpackungen

Sortierung

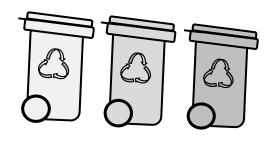


© cyclos-HTP

Schwimm-Sink

Mechanische Wiederaufbereitung

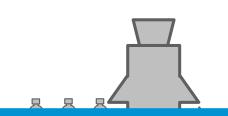
Rezyklat Einsatz



OFI 2024 | www.ofi.at

Wann ist eine Verpackung Recyclingfähig?

Sammlung



Sammlung von Leicht- und Metallverpackungen ab 2023

Sortierung

Mechanische Wiederaufbereitung

Rezyklat Einsatz

Recyclingfähigkeit ist die stofflich hochwertige und nachweisbare Substitution von Primärmaterialien durch das erzeugte Rezyklat!

© ARA AG

Schwimm-Sink

Sonstiges

ingen/ Wasch-

inigungsmittel

Recyclingfähigkeit - Bewertungsmöglichkeiten

Design for Recycling Guidelines

- Recyclingfähigkeits-Kontrollliste
- Ergebnis in Ordinalskala (rot, gelb, grün)
- existieren fast ausschließlich für Kunststoffverpackungen
- Von verschiedenen
 Institutionen veröffentlicht und laufend aktualisiert
- Design-Leitfaden für die Entwicklung von Kunststoffverpackungen

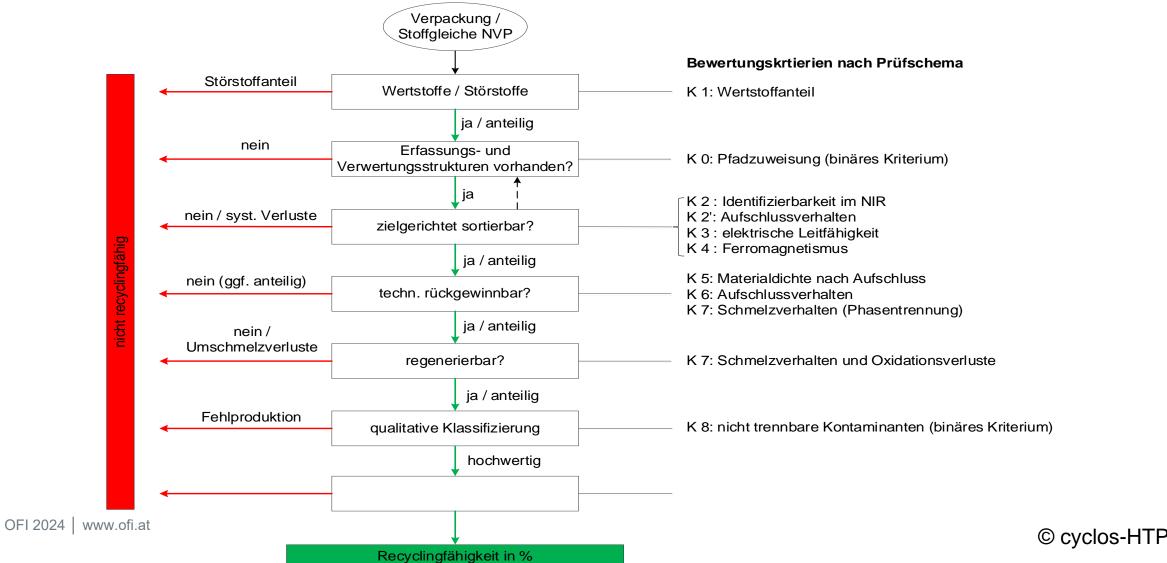
Recyclingfähigkeit - Bewertungsmöglichkeiten

Design for Recycling Guidelines	Theoretische Recyclingfähigkeit
 Recyclingfähigkeits-Kontrollliste 	 Basiert auf D4R-Guidelines
 Ergebnis in Ordinalskala (rot, gelb, grün) 	 Beschränkt auf vorhandene Materialarten
 existieren fast ausschließlich für Kunststoffverpackungen 	 Recyclingfähigkeit anhand von vorhandenen Daten und Grenzwerten eingeordnet
 Von verschiedenen Institutionen veröffentlicht und laufend aktualisiert 	 Bewertung von Verpackungen im Originalzustand auf Basis des Materials (Füllgutrückstände bzw.
 Design-Leitfaden für die Entwicklung von Kunststoffverpackungen 	Zustand in Sortieranlage wird nicht betrachtet)
	 Keine praktische Betrachtung der individuellen Verpackung

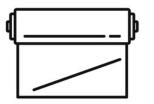
Recyclingfähigkeit - Bewertungsmöglichkeiten

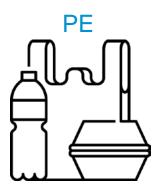
Design for Recycling Guidelines	Theoretische Recyclingfähigkeit	Graduelle Recyclingfähigkeit
 Recyclingfähigkeits-Kontrollliste Ergebnis in Ordinalskala (rot, gelb, grün) existieren fast ausschließlich für Kunststoffverpackungen Von verschiedenen Institutionen veröffentlicht und laufend aktualisiert Design-Leitfaden für die Entwicklung von Kunststoffverpackungen 	 Basiert auf D4R-Guidelines Beschränkt auf vorhandene Materialarten Recyclingfähigkeit anhand von vorhandenen Daten und Grenzwerten eingeordnet Bewertung von Verpackungen im Originalzustand auf Basis des Materials (Füllgutrückstände bzw. Zustand in Sortieranlage wird nicht betrachtet) Keine praktische Betrachtung der individuellen Verpackung 	 Quantitative Ermittlung der technisch möglichen Recyclingfähigkeit Individuelle Betrachtung jeder einzelnen Verpackung Praktische Verifizierung der Recyclingfähigkeit Für alle Materialarten anwendbar Berücksichtigung Sammel-, Sortierund Recyclinginfrastrukturen Festlegung intendierter Rezyklat Anwendung → spezifische Betrachtung von Unverträglichkeiten

Technische Recyclingfähigkeitsbewertung – OFI Kooperation mit cyclos-HTP


- Intensive Kooperation seit Anfang 2022
- Prüfung und Zertifizierung der technischen Recyclingfähigkeit entlang von 10 Kriterien und 13 Stoffstrompfaden
- Länderspezifische Ausweisung der Sortier-, Aufbereitungsund Verwertungsfähigkeit (EU, CH, NO, UK)
- PPWR konforme Ausweisung der Recyclingfähigkeit
- Praktische Verifizierung → Kompatibilitätsstudien zur Bemessung der individuellen Recyclingfähigkeit
- OFI Zertifikat sowie jährliche Rezertifizierung inklusive Abgleich mit aktueller Rechtslage
- Weiterentwicklung des Bewertungsstandards → Abbildung aktueller technischer Verwertungsmöglichkeiten
- Optimierungsansätze für eine bessere Recyclingfähigkeit

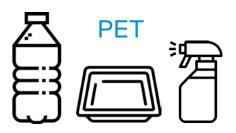
Bewertungskatalog – Ablaufschema Bewertung Verpackungen

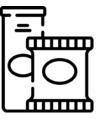




Unsere Bewertungspfade

Folien (LDPE)





Mischkunststoffe/ Mischpolyolefine

Papierverpackungen/ Papierverbunde

Beispiele praktischer Sortier- und Recyclingprüfungen

NIR Testmethodik / CHI-C2-NIR / 3.0

Beschreibung der Analyse

Auswertung

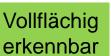
Statistische Ermittlung der zu messenden Oberfläche

Bestimmung möglicher Messpositionen

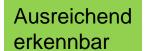
Expertenauswertung

(Beispiel: PP-Folie, Papierbeschichtung

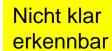
verschiedener Dichten, Metallisierung)


NIR – spektrometrische Detailansicht

Kontrolltest



Verifizierung / Anwendungstest (mit mind. 10 Proben)



Klassifizierung

7-10 (10): gut erkennbar

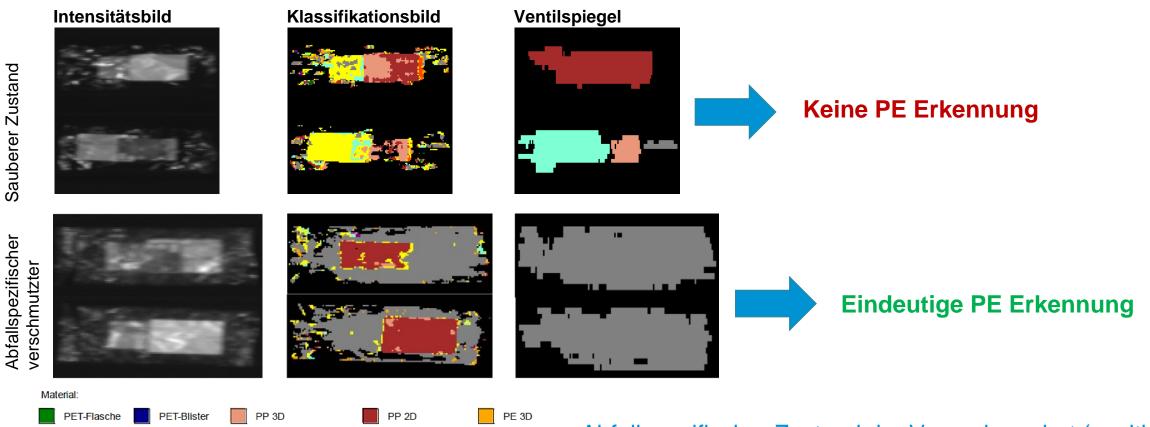
4-6 (10): limitiert erkennbar

0-3 (10): nicht erkennbar

Einfluss abfallspezifischer Zustand auf die NIR-Sortierbarkeit

PE Schlauchbeutel mit PP Etikett

Papier, Pappe, Karton


PMMA

Flüssigkeitskarton

PBT

PLA

Textil

Abfallspezifischer Zustand der Verpackung hat (positiven) Einfluss auf die NIR Erkennung und damit Sortierbarkeit!

Kompatibilitätsstudie PET-Schale (Methode CHI-8-SEPPET)

Kompatibilitätsprüfung für PET Materialien

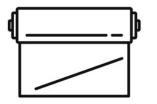
- Waschtest bei 80°C
- Anschließende Röstprüfung bei 220°C

Kompatibilitätsprüfung der PET-Schalen Siegelfläche zu einer PET/PE Siegelfolie

X Nach der Röstung deutliche Verfärbung der Flakes sichtbar

→ Keine Recyclingkompatibilität

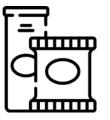
Siegelrand vor Waschprozess


Siegelrand nach Waschprozess

Siegelrand nach Röstung PET-Schale (Vergleichsprobe) – nach Röstung

Unsere Bewertungspfade

Folien (LDPE)



Papierverpackungen/
Papierverbunde

Innovation?

Metallverpackungen

Einzelnachweise – Wann sinnvoll?

- Sinnvoll bei neuen Materialien und Verpackungskonzepten
- Sammel-, Sortier- und Recyclinginfrastruktur nachweisbar in Aufbau (bereits in kleinem Maßstab verfügbar)
- Bei Bedenken bezüglich Kompatibilität (theoretische K.O.-Komponenten)
- → Ohne die Option des Einzelnachweises wird die Innovation im Verpackungsbereich gebremst! Beispiele für erfolgreiche Einzelnachweise:
- Recyclingkompatibilität **PE/PA Verbunden** (Co-Extrusion & Compatibilizer notwendig)
- Recyclingkompatibilität von **EVOH** (auch über 5 % Gewichtsanteil) im Spritzguss
- Erfassung des Sortier- und Verwertungspfades für **PET-Schalen** (*AT*, *DE*, **NL**)

Es ist wichtig zu wissen, was derzeit recyclingfähig ist und was es in Zukunft sein wird!

Zusammenfassend

Recyclingfähigkeit = Abbildung und Bemessung der hochwertigen werkstofflichen Verwertung von Verpackungen und damit Substitution von Primärrohstoffen

Bemessungsstandards sollten:

- Praktisch prüfen
- Nationalstaatliche Erfassungs- und Verwertungsstrukturen miteinbeziehen (PPWR!)
- Mit Industrie sowie Sammel-, Sortier- und Recyclingunternehmen im Austausch stehen
- Harmonisiert sein (PPWR, JRC, CEN)
- → Ökonomische und ökologische Weiterentwicklung der Verpackungs-, Abfall und Recyclinginfrastruktur

Angelika Wlodarczyk, MSc Prüfleitung technische Recyclingfähigkeit

t: +43 1 798 16 01 – 219 angelika.wlodarczyk@ofi.at

OFI 1030 Wien, Franz-Grill-Straße 5, Objekt 213 office@ofi.at | www.ofi.at