

www.unileoben.ac.at www.tuwien.at

Einleitung

CD Labor für Recyclingbasierte Kreislaufwirtschaft, TU Wien

Case Study: Recycling von Aschen aus Müllverbrennungsanlagen (MVAs)

Rost- & Bettaschen aus Abfallverbrennung

Grobe Rückstände aus Verbrennung

12 MVAs in Österreich

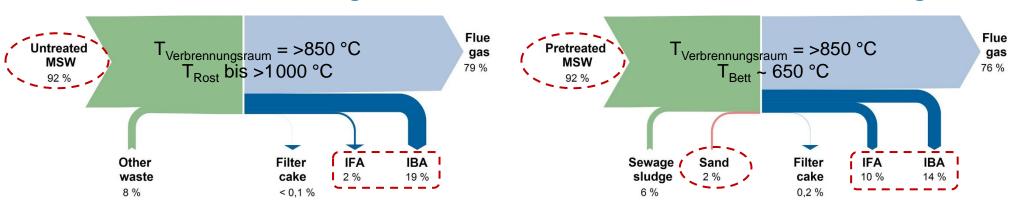
7 Rostfeuerungsanlagen

- Kapazität ~ 1,8 Mio. t/a
- Rostaschen: ca. 400.000 t/a

5 Wirbelschichtfeuerungen

- Kapazität ~ 0,9 Mio. t/a
- Bettaschen: ca. 90.000 t/a

KELLNER ET AL., 2022


Unterschiede Rost- und Wirbelschichtfeuerung

FA Flugasche
BA Rost- bzw. Bettasche
(incineration bottom ash)

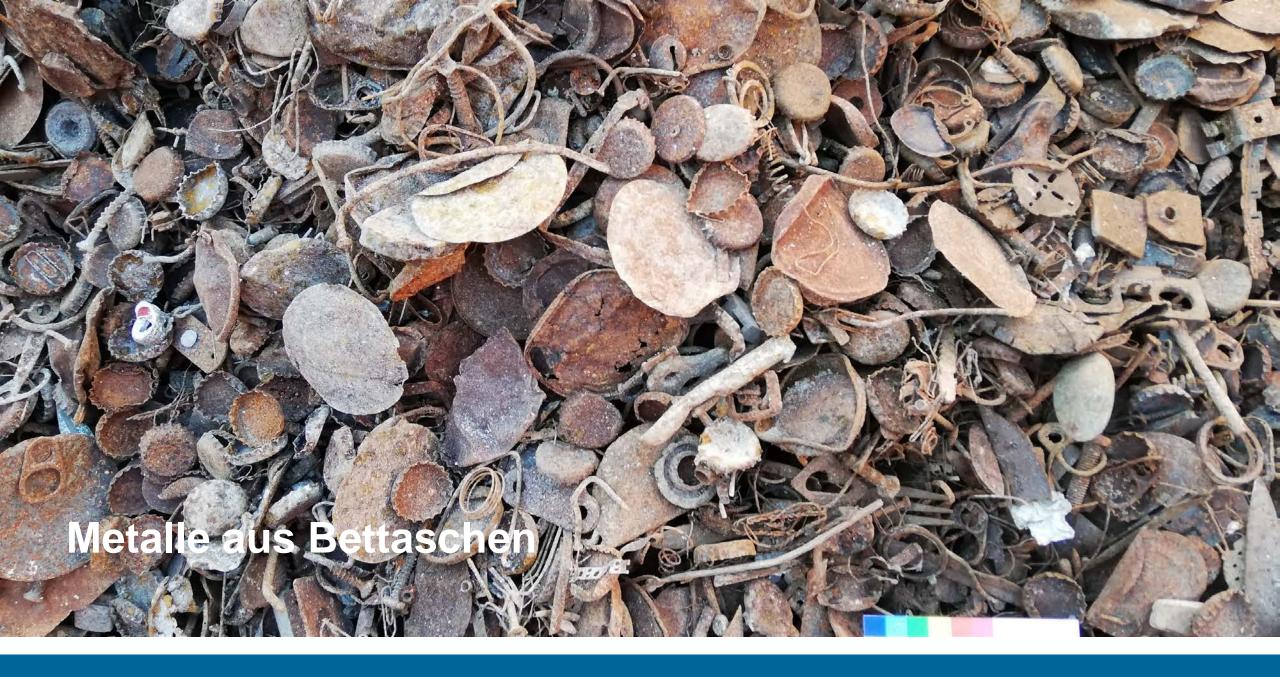
Wirbelschichtfeuerung

Rostfeuerung

- Wirbelschicht: Vorbehandlung des Abfalls
- Wirbelschicht: Einsatz von Sand als Bettmaterial
- Unterschiede Prozess: Temperatur und Verweilzeit
- Anteilig mehr Flugasche bei Wirbelschichtfeuerung
- Ascheaustrag trocken / nass

BLASENBAUER ET AL. (2023); LECKNER AND LIND (2020); KELLNER ET AL. (2022)

Bettaschen aus der Abfallverbrennung



Hauptbestandteile von Bettaschen

Bettasche	Metalle	Aluminium, Eisen, sonstige Metalle (Edelstahl, NE-Metalle)	10-15%
	Mineralik	Keramik, Steine, Porzellan (KSP), Baumaterialien (z.B. Ziegel, Beton), mineralische Schmelzagglomerate	40-70%
	Glas	Verpackungsglas, Flachglas, Spezialgläser (z.B. Bleiglas, hitzebeständiges Glas)	20-45%

Metalle aus Bettaschen

Stand der Technik: Metallabtrennung aus Bettaschen

Verpackungsmetalle (Alu, Eisen) für Recyclingquoten anrechenbar

Untersuchung Brantner-Aufbereitung mit einer Bettasche:

- >98% Alu und Eisen >4 mm nach Aufbereitung potentiell verwertbar
- Geringere Aluminiumverluste durch Wirbelschichtfeuerung möglich
 - Durch geringere Feuerungstemperatur und Verweilzeit
- Geringerer Verschmutzungsgrad der rückgewonnenen Metalle als in Rostaschen

LEDERER UND SCHUCH, 2024; BLASENBAUER ET AL., 2023; MÜHL ET AL., 2024

Qualitätsvergleich Metalle: magnetische Metalle >4 mm

Qualitätsvergleich Metalle: Aluminium >4 mm

Aluminiumfraktion, Bettasche

Mineralik aus Bettaschen

- BAWP 2023: rechtlicher Rahmen für Verwertung im Bauwesen
 → Straßenbau, Beton
 - Derzeit wenig Einsatz in der Praxis
 - Alternative: Deponierung
- Umfassende Aufbereitung für Einhaltung der Umweltparameter erforderlich
 - Untersuchungen Brantner Anlage: Grenzwerte für Bettaschen einhaltbar
 - Aufbereitungsschritte:
 - Restmetallgehalte: mehrstufige Metallabscheidung, auch in Feinfraktion
 - Eluat-Grenzwerte: Alterung von 3 Monaten
 - Reduktion Sulfat: Bewässerung mit Frischwasser während Aufbereitung
 - Ggf. Absiebung bei 2 mm empfehlenswert

Anwendung in der Betonerzeugung

- Nutzung der Mineralik als industriell hergestellte Gesteinskörnung (IGK)
- 10-20% Anteil der IGK am Beton
- Für Anwendung: Prüfung der bautechnischen Eignung erforderlich

LEDERER ET AL., 2024; FOTOS: FELIX FEHER

Glas aus Bettaschen

Voruntersuchungen: Glas aus Bettaschen technisch rückgewinnbar⁽¹⁾

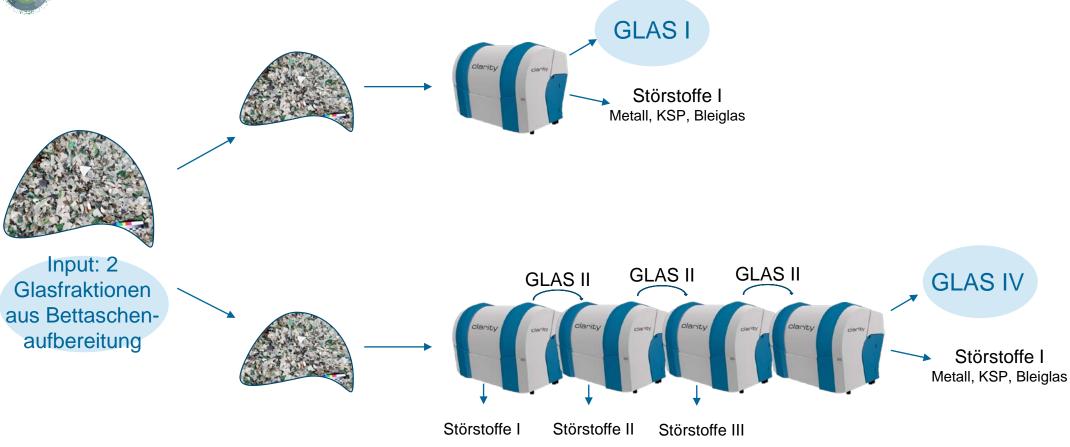
- Rostaschen: keine Glasrückgewinnung
- Industrielle Anwendung bei Fa. Brantner Österreich GmbH

Status Quo:

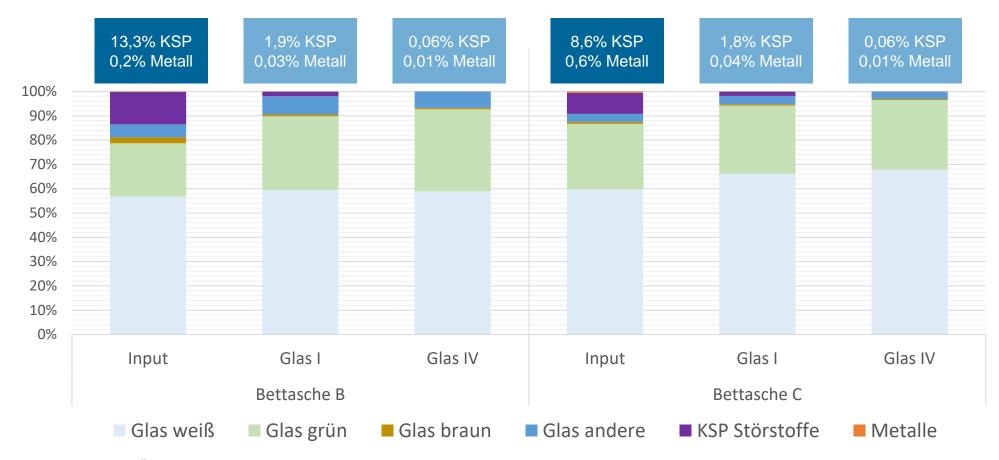
- ~ 55.000 t/a^{(2),(3)} Glasverpackungen in MVAs
- Glas in MVAs wurde 2022 fast vollständig deponiert (2)

Verpackungsglasindustrie als möglicher Verwertungsweg:

- Versuch im CD Labor: Aufreinigung von 2 Glasfraktionen aus Brantner-Aufbereitungsanlage
- Ziel: Einhaltung Qualitätskriterien der Verpackungsglasindustrie


(1) MÜHL ET AL., 2023; (2) LIPP AND LEDERER, 2024, UNDER REVIEW; (3) BAWP 23

Versuchsaufbau (Auszug)



Zusammensetzung der Glasfraktionen vor und nach Aufbereitungsversuchen

"GLAS ANDERE" ENTHÄLT SONSTIGES BUNTGLAS UND ANDERE GLASARTEN, WIE DRAHTGLAS, VERSCHMOLZENES GLAS ETC.

Zusammensetzung der Glasfraktionen vor und nach Aufbereitungsversuchen: Mengenbetrachtung

"GLAS ANDERE" ENTHÄLT SONSTIGES BUNTGLAS UND ANDERE GLASARTEN, WIE DRAHTGLAS, VERSCHMOLZENES GLAS ETC.

Glas: Zusammenfassung der Ergebnisse

Glasfraktionen aus industrieller Ascheaufbereitung enthalten bereits >80% Glas

Weitere Aufbereitungsschritte ermöglichen Glasreinheiten von >95%

- Insbesondere Metalle können sehr gut abgeschieden werden
- Gute Abreicherung von Pb in Glasfraktionen

Grenzwerte der Verpackungsglasindustrie jedoch extrem niedrig

• g/t bzw. ppm Bereich \rightarrow 0,0001%!

Relevante Verunreinigungen	Behälterglas (alle Farben)	
KSP	20 g/t	
NE Metalle	3 g/t	
Fe Metalle	2 g/t	
Schwermetalle (Pb, Cd, Cr(VI), Hg)	200 g/t	

BV GLAS, BDE, BVSE, 2014 (GRENZWERTE OFENFERTIGES MATERIAL)

Schlussfolgerungen

- Höhere Qualität von Metallen und Mineralik aus Bettasche
 - Weniger mineralische Verunreinigungen der Metalle aus Bettasche
 - Mineralikfraktion der Bettasche: geringere Schwermetallgehalte
- Glasabscheidung industriell nur aus Bettasche möglich
 - Durch Aufbereitung des Glases auch Verwertung möglich
- → Tendenziell Vorteile bei der Verwertung von Bettaschen
- Jedoch auch Nachteile der Wirbelschichtfeuerung zu beachten!
- → Für Gesamtbetrachtung weitere Forschung erforderlich

Literatur

Kellner, M., Schindler, I., Jany, A., 2022. Statusbericht Abfallverbrennung: Berichtsjahr 2020. Report / Umweltbundesamt REP-0830, Wien, 159 pp. https://www.umweltbundesamt.at/studien-reports/publikationsdetail?pub_id=2450.

Blasenbauer, D., Huber, F., Mühl, J., Fellner, J., & Lederer, J. (2023). Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator. Waste Management, 161, 142-155.

Leckner, B., & Lind, F. (2020). Combustion of municipal solid waste in fluidized bed or on grate—A comparison. Waste management, 109, 94-108.

Mühl, J., Hofer, S., Blasenbauer, D., Lederer, J., 2024. Recovery of aluminum, magnetic ferrous metals and glass through enhanced industrial-scale treatment of different MSWI bottom ashes. Waste Management. https://doi.org/10.1016/j.wasman.2024.10.025.

Lederer, J., Schuch, D., 2024. The contribution of waste and bottom ash treatment to the circular economy of metal packaging: A case study from Austria. Resources, Conservation and Recycling 203, 107461. https://doi.org/10.1016/j.resconrec.2024.107461.

BMK, 2023. Bundes-Abfallwirtschaftsplan 2023, Teil 1. Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie, Wien, 490 pp.

Lederer, J., Hron, J., Feher, F., Hofer, S., Mühl, J., Zeman, O., Bergmeister, K., 2024. Evaluation of standard concretes containing enhanced-treated fluidized-bed waste incineration bottom ash as manufactured aggregate. Case Studies in Construction Materials, e03759. https://doi.org/10.1016/j.cscm.2024.e03759.

Mühl, J., Skutan, S., Stockinger, G., Blasenbauer, D., Lederer, J., 2023. Glass recovery and production of manufactured aggregate from MSWI bottom ashes from fluidized bed and grate incineration by means of enhanced treatment. Waste Management 168, 321–333.

Lipp, A.-M., Lederer, J., 2024 (under review). The Circular Economy of Packaging Waste in Austria: An Evaluation Based on Statistical Entropy and Material Flow Analysis. Resources, Conservation and Recycling.

Bundesverband Glasindustrie e.V; BDE Bundesverband der Deutschen Entsorgungs-, Wasser- und Rohstoffwirtschaft e. V; bvse-Bundesverband Sekundärrohstoffe und Entsorgung e.V., 2014. Leitlinie "Qualitätsanforderungen an Glasscherben zum Einsatz in der Behälterglasindustrie": Standardblatt T 120.

RECYCLING ZENTRUM AHRENTAL

Kontakt

Julia Mühl

Christian Doppler Labor für Recyclingbasierte Kreislaufwirtschaft

Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften (ICEBE)

TU Wien Getreidemarkt 9, 1060 Wien

E-Mail: julia.muehl@tuwien.ac.at